On the Potential of Network-Based Features for Fraud Detection
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- John Muschelli, 2020. "ROC and AUC with a Binary Predictor: a Potentially Misleading Metric," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 696-708, October.
- Bermúdez, Ll. & Pérez, J.M. & Ayuso, M. & Gómez, E. & Vázquez, F.J., 2008. "A Bayesian dichotomous model with asymmetric link for fraud in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 779-786, April.
- Massimiliano Zanin & Miguel Romance & Santiago Moral & Regino Criado, 2018. "Credit Card Fraud Detection through Parenclitic Network Analysis," Complexity, Hindawi, vol. 2018, pages 1-9, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Benedek Botond & László Ede, 2019. "Identifying Key Fraud Indicators in the Automobile Insurance Industry Using SQL Server Analysis Services," Studia Universitatis Babeș-Bolyai Oeconomica, Sciendo, vol. 64(2), pages 53-71, August.
- Botond Benedek & Balint Zsolt Nagy, 2023. "Traditional versus AI-Based Fraud Detection: Cost Efficiency in the Field of Automobile Insurance," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 22(2), pages 77-98.
- Pierre Durand & Gaëtan Le Quang & Arnold Vialfont, 2023. "Are Basel III requirements up to the task? Evidence from bankruptcy prediction models," Working Papers 2308, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
- Sergio Iglesias Perez & Regino Criado, 2022. "Increasing the Effectiveness of Network Intrusion Detection Systems (NIDSs) by Using Multiplex Networks and Visibility Graphs," Mathematics, MDPI, vol. 11(1), pages 1-24, December.
- Katja Müller & Hato Schmeiser & Joël Wagner, 2016. "The impact of auditing strategies on insurers’ profitability," Journal of Risk Finance, Emerald Group Publishing, vol. 17(1), pages 46-79, January.
- Xia, Changyuan & Yang, Junjie & Yang, Zeng & Chan, Kam C., 2023. "Do directors with foreign experience increase the corporate demand for directors' and officers' liability insurance? Evidence from China," Economic Modelling, Elsevier, vol. 119(C).
- Battiston, Pietro & Gamba, Simona & Santoro, Alessandro, 2024. "Machine learning and the optimization of prediction-based policies," Technological Forecasting and Social Change, Elsevier, vol. 199(C).
- Bayerstadler, Andreas & van Dijk, Linda & Winter, Fabian, 2016. "Bayesian multinomial latent variable modeling for fraud and abuse detection in health insurance," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 244-252.
- Noemí DeCastro-García & Ángel Luis Muñoz Castañeda & David Escudero García & Miguel V. Carriegos, 2019. "Effect of the Sampling of a Dataset in the Hyperparameter Optimization Phase over the Efficiency of a Machine Learning Algorithm," Complexity, Hindawi, vol. 2019, pages 1-16, February.
- Daixin Wang & Zhiqiang Zhang & Yeyu Zhao & Kai Huang & Yulin Kang & Jun Zhou, 2024. "Financial Default Prediction via Motif-preserving Graph Neural Network with Curriculum Learning," Papers 2403.06482, arXiv.org.
- Bofei Xiao & Bo Lei & Wei Lan & Bin Guo, 2022. "A blockwise network autoregressive model with application for fraud detection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1043-1065, December.
- Iglesias Pérez, Sergio & Moral-Rubio, Santiago & Criado, Regino, 2021. "A new approach to combine multiplex networks and time series attributes: Building intrusion detection systems (IDS) in cybersecurity," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
- Michele Tumminello & Andrea Consiglio & Pietro Vassallo & Riccardo Cesari & Fabio Farabullini, 2023. "Insurance fraud detection: A statistically validated network approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 381-419, June.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-03-25 (Big Data)
- NEP-NET-2024-03-25 (Network Economics)
- NEP-SBM-2024-03-25 (Small Business Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.09495. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.