Author
Abstract
Environmental impact assessment (EIA) is used globally to manage the impacts of development projects on the environment, so there is an imperative to demonstrate that it can effectively identify risky projects. However, despite the widespread use of quantitative predictive risk models in areas such as toxicology, ecosystem modelling and water quality, the use of predictive risk tools to assess the overall expected environmental impacts of major construction and development proposals is comparatively rare. A risk-based approach has many potential advantages, including improved prediction and attribution of cause and effect; sensitivity analysis; continual learning; and optimal resource allocation. In this paper we investigate the feasibility of using a Bayesian belief network (BBN) to quantify the likelihood and consequence of non-compliance of new projects based on the occurrence probabilities of a set of expert-defined features. The BBN incorporates expert knowledge and continually improves its predictions based on new data as it is collected. We use simulation to explore the trade-off between the number of data points and the prediction accuracy of the BBN, and find that the BBN could predict risk with 90% accuracy using approximately 1000 data points. Although a further pilot test with real project data is required, our results suggest that a BBN is a promising method to monitor overall risks posed by development within an existing EIA process given a modest investment in data collection.
Suggested Citation
Sam Nicol & Iadine Chadès, 2017.
"A preliminary approach to quantifying the overall environmental risks posed by development projects during environmental impact assessment,"
PLOS ONE, Public Library of Science, vol. 12(7), pages 1-21, July.
Handle:
RePEc:plo:pone00:0180982
DOI: 10.1371/journal.pone.0180982
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0180982. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.