IDEAS home Printed from https://ideas.repec.org/a/mnb/finrev/v22y2023i2p77-98.html
   My bibliography  Save this article

Traditional versus AI-Based Fraud Detection: Cost Efficiency in the Field of Automobile Insurance

Author

Listed:
  • Botond Benedek

    (Babes-Bolyai University, Cluj-Napoca)

  • Balint Zsolt Nagy

    (Babes-Bolyai University, Cluj-Napoca)

Abstract

Business practice and various industry reports all show that automobile insurance fraud is very common, which is why effective fraud detection is so important. In our study, we investigate whether today's widespread AI-based fraud detection methods are more effective from a financial (cost-effectiveness) point of view than methods based on traditional statistical-econometric tools. Based on our results, we came to the unexpected conclusion that the current AI-based automobile insurance fraud detection methods tested on a real database found in the literature are less cost-effective than traditional statistical-econometric methods.

Suggested Citation

  • Botond Benedek & Balint Zsolt Nagy, 2023. "Traditional versus AI-Based Fraud Detection: Cost Efficiency in the Field of Automobile Insurance," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 22(2), pages 77-98.
  • Handle: RePEc:mnb:finrev:v:22:y:2023:i:2:p:77-98
    as

    Download full text from publisher

    File URL: https://en-hitelintezetiszemle.mnb.hu/letoltes/fer-22-2-st3-benedek-nagy.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Balazs J. Csillag & Marcell P. Granat & Gabor Neszveda, 2022. "Media Attention to Environmental Issues and ESG Investing," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 21(4), pages 129-149.
    2. Bermúdez, Ll. & Pérez, J.M. & Ayuso, M. & Gómez, E. & Vázquez, F.J., 2008. "A Bayesian dichotomous model with asymmetric link for fraud in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 779-786, April.
    3. El Bachir Belhadji & George Dionne & Faouzi Tarkhani, 2000. "A Model for the Detection of Insurance Fraud*," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 25(4), pages 517-538, October.
    4. Miklós Virag & Tamás Nyitrai, 2013. "Application of support vector machines on the basis of the first Hungarian bankruptcy model," Society and Economy, Akadémiai Kiadó, Hungary, vol. 35(2), pages 227-248, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katja Müller & Hato Schmeiser & Joël Wagner, 2016. "The impact of auditing strategies on insurers’ profitability," Journal of Risk Finance, Emerald Group Publishing, vol. 17(1), pages 46-79, January.
    2. Georges Dionne & Florence Giuliano & Pierre Picard, 2009. "Optimal Auditing with Scoring: Theory and Application to Insurance Fraud," Management Science, INFORMS, vol. 55(1), pages 58-70, January.
    3. Viaene, Stijn & Ayuso, Mercedes & Guillen, Montserrat & Van Gheel, Dirk & Dedene, Guido, 2007. "Strategies for detecting fraudulent claims in the automobile insurance industry," European Journal of Operational Research, Elsevier, vol. 176(1), pages 565-583, January.
    4. G. Dionne & F. Giuliano & P. Picard, 2002. "Optimal auditing for insurance fraud," THEMA Working Papers 2002-32, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    5. Catayoun Azarm & Erman Acar & Mickey van Zeelt, 2024. "On the Potential of Network-Based Features for Fraud Detection," Papers 2402.09495, arXiv.org, revised Feb 2024.
    6. Xia, Changyuan & Yang, Junjie & Yang, Zeng & Chan, Kam C., 2023. "Do directors with foreign experience increase the corporate demand for directors' and officers' liability insurance? Evidence from China," Economic Modelling, Elsevier, vol. 119(C).
    7. Bayerstadler, Andreas & van Dijk, Linda & Winter, Fabian, 2016. "Bayesian multinomial latent variable modeling for fraud and abuse detection in health insurance," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 244-252.
    8. Dionne, Georges, 2012. "The empirical measure of information problems with emphasis on insurance fraud and dynamic data," Working Papers 12-10, HEC Montreal, Canada Research Chair in Risk Management.
    9. Jean Pinquet & Mercedes Ayuso & Montserrat Guillén, 2007. "Selection Bias and Auditing Policies for Insurance Claims," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(2), pages 425-440, June.
    10. Jörg Schiller, 2006. "The Impact of Insurance Fraud Detection Systems," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(3), pages 421-438, September.
    11. Tamás Kristóf & Miklós Virág, 2020. "A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary," JRFM, MDPI, vol. 13(2), pages 1-20, February.
    12. Yufei Jin & Roderick Rejesus & Bertis Little, 2005. "Binary choice models for rare events data: a crop insurance fraud application," Applied Economics, Taylor & Francis Journals, vol. 37(7), pages 841-848.
    13. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    14. Bermúdez, Ll. & Pérez, J.M. & Ayuso, M. & Gómez, E. & Vázquez, F.J., 2008. "A Bayesian dichotomous model with asymmetric link for fraud in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 779-786, April.
    15. Benedek Botond & László Ede, 2019. "Identifying Key Fraud Indicators in the Automobile Insurance Industry Using SQL Server Analysis Services," Studia Universitatis Babeș-Bolyai Oeconomica, Sciendo, vol. 64(2), pages 53-71, August.
    16. Nyitrai, Tamás, 2014. "Növelhető-e a csőd-előrejelző modellek előre jelző képessége az új klasszifikációs módszerek nélkül? [Can the predictive capacity of bankruptcy forecasting models be increased without new classific," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 566-585.
    17. Stijn Viaene & Guido Dedene, 2004. "Insurance Fraud: Issues and Challenges," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 29(2), pages 313-333, April.
    18. Daixin Wang & Zhiqiang Zhang & Yeyu Zhao & Kai Huang & Yulin Kang & Jun Zhou, 2024. "Financial Default Prediction via Motif-preserving Graph Neural Network with Curriculum Learning," Papers 2403.06482, arXiv.org.
    19. Michele Tumminello & Andrea Consiglio & Pietro Vassallo & Riccardo Cesari & Fabio Farabullini, 2023. "Insurance fraud detection: A statistically validated network approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 381-419, June.

    More about this item

    Keywords

    automobile insurance; insurance fraud; fraud detection; cost-sensitive decision-making; data mining;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mnb:finrev:v:22:y:2023:i:2:p:77-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Morvay Endre (email available below). General contact details of provider: https://edirc.repec.org/data/mnbgvhu.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.