IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i4p1411-d1587052.html
   My bibliography  Save this article

A Method for Estimating Tree Growth Potential with Back Propagation Neural Network

Author

Listed:
  • Jianfeng Yao

    (College of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China
    Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou 450046, China
    Xinyang Academy of Ecological Research, Xinyang 464000, China)

  • Cancong Zhao

    (College of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China)

  • Xuefan Hu

    (Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China)

  • Yingshan Jin

    (Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China)

  • Yanling Li

    (College of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China)

  • Liming Cai

    (Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou 450046, China
    Xinyang Academy of Ecological Research, Xinyang 464000, China
    College of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China)

  • Zhuofan Li

    (Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou 450046, China
    Xinyang Academy of Ecological Research, Xinyang 464000, China
    College of Tourism, Xinyang Normal University, Xinyang 464000, China)

  • Fang Li

    (Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China)

  • Fang Liang

    (Beijing Key Laboratory of Greening Plants Breeding, Beijing Academy of Forestry and Landscape Architecture, Beijing 100102, China)

Abstract

Tree growth potential is crucial for maintaining forest health and sustainable development. Traditional expert-based assessments of growth potential are inherently subjective. To address this subjectivity and improve accuracy, this study proposed a method of using Backpropagation Neural network (BPNN) to classify tree growth potential. 60 Pinus tabulaeformis (Carr.) and 60 Platycladus orientalis (Linn.) were selected as experimental trees in the Miyun Reservoir Water Conservation Forest Demonstration Zone in Beijing, and 95 Pinus massoniana (Lamb.) and 60 Cunninghamia lanceolate (Linn.) were selected as experimental trees in the Jigongshan Nature Reserve. The average annual ring width of the outermost 2 cm xylem of the experimental trees were measured by discs or increment cores, and the wood volume increment of each experimental trees in recent years were calculated. According to wood volume increment, the growth potential of experimental trees was divided into three levels: strong, medium, and weak. Using tree height, breast height diameter, average crown width as input variables, using growth potential level as output variables, four sub models for each tree species were established; Using tree species, tree height, breast height diameter, average crown width as input variables, using growth potential level as output variables, a generalized model was established for these four tree species. The test results showed that the accuracy of the sub models for Pinus tabulaeformis , Platycladus orientalis , Pinus massoniana , and Cunninghamia lanceolate were 68.42%, 77.78%, 86.21%, and 78.95%, respectively, and the accuracy of the generalized model was 71.19%. These findings suggested that employing BPNN is a viable approach for accurately estimating tree growth potential.

Suggested Citation

  • Jianfeng Yao & Cancong Zhao & Xuefan Hu & Yingshan Jin & Yanling Li & Liming Cai & Zhuofan Li & Fang Li & Fang Liang, 2025. "A Method for Estimating Tree Growth Potential with Back Propagation Neural Network," Sustainability, MDPI, vol. 17(4), pages 1-15, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1411-:d:1587052
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/4/1411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/4/1411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hanchen Wang & Tianfan Fu & Yuanqi Du & Wenhao Gao & Kexin Huang & Ziming Liu & Payal Chandak & Shengchao Liu & Peter Katwyk & Andreea Deac & Anima Anandkumar & Karianne Bergen & Carla P. Gomes & Shir, 2023. "Scientific discovery in the age of artificial intelligence," Nature, Nature, vol. 620(7972), pages 47-60, August.
    2. Hanchen Wang & Tianfan Fu & Yuanqi Du & Wenhao Gao & Kexin Huang & Ziming Liu & Payal Chandak & Shengchao Liu & Peter Katwyk & Andreea Deac & Anima Anandkumar & Karianne Bergen & Carla P. Gomes & Shir, 2023. "Publisher Correction: Scientific discovery in the age of artificial intelligence," Nature, Nature, vol. 621(7978), pages 33-33, September.
    3. Wang, Kai & Huang, Hao & Deng, Jun & Zhang, Yanni & Wang, Qun, 2024. "A spatio-temporal temperature prediction model for coal spontaneous combustion based on back propagation neural network," Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial intelligence and the transformation of higher education institutions," Papers 2402.08143, arXiv.org.
    2. Fabian Dvorak & Regina Stumpf & Sebastian Fehrler & Urs Fischbacher, 2024. "Generative AI Triggers Welfare-Reducing Decisions in Humans," Papers 2401.12773, arXiv.org.
    3. Koehler, Maximilian & Sauermann, Henry, 2024. "Algorithmic management in scientific research," Research Policy, Elsevier, vol. 53(4).
    4. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy & Marco Vivarelli, 2024. "AI as a new emerging technological paradigm: evidence from global patenting," DISCE - Working Papers del Dipartimento di Politica Economica dipe0038, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    5. Anil R. Doshi & Oliver P. Hauser, 2023. "Generative artificial intelligence enhances creativity but reduces the diversity of novel content," Papers 2312.00506, arXiv.org, revised Mar 2024.
    6. Hui Li & Yichi Zhang & Zhaoxiong Wu & Zhe Wang & Tong Wu, 2025. "An Importance Sampling Method for Generating Optimal Interpolation Points in Training Physics-Informed Neural Networks," Mathematics, MDPI, vol. 13(1), pages 1-20, January.
    7. Naudé, Wim, 2024. "What They Don't Teach You about Artificial Intelligence at Business School: Stagnation, Oil, and War," IZA Discussion Papers 17306, Institute of Labor Economics (IZA).
    8. Mohseni, Morteza, 2023. "Deep learning in bifurcations of particle trajectories," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. Sani I. Abba & Mohamed A. Yassin & Auwalu Saleh Mubarak & Syed Muzzamil Hussain Shah & Jamilu Usman & Atheer Y. Oudah & Sujay Raghavendra Naganna & Isam H. Aljundi, 2023. "Drinking Water Resources Suitability Assessment Based on Pollution Index of Groundwater Using Improved Explainable Artificial Intelligence," Sustainability, MDPI, vol. 15(21), pages 1-21, November.
    10. Evangelos Katsamakas & Oleg V. Pavlov & Ryan Saklad, 2024. "Artificial Intelligence and the Transformation of Higher Education Institutions: A Systems Approach," Sustainability, MDPI, vol. 16(14), pages 1-21, July.
    11. He, Hongwen & Su, Qicong & Huang, Ruchen & Niu, Zegong, 2024. "Enabling intelligent transferable energy management of series hybrid electric tracked vehicle across motion dimensions via soft actor-critic algorithm," Energy, Elsevier, vol. 294(C).
    12. Chen Wang & Xu Wu & Ziyu Xie & Tomasz Kozlowski, 2023. "Scalable Inverse Uncertainty Quantification by Hierarchical Bayesian Modeling and Variational Inference," Energies, MDPI, vol. 16(22), pages 1-23, November.
    13. Van Khanh Pham & Duc Minh Le, 2024. "Impact of Artificial Intelligence on Environmental Quality through Technical Change: A Free Dynamic Equilibrium Approach," Papers 2410.06501, arXiv.org.
    14. Damioli, Giacomo & Van Roy, Vincent & Vertesy, Daniel & Vivarelli, Marco, 2024. "Is Artificial Intelligence Generating a New Paradigm? Evidence from the Emerging Phase," IZA Discussion Papers 17183, Institute of Labor Economics (IZA).
    15. Stefano Bianchini & Moritz Muller & Pierre Pelletier, 2023. "Drivers and Barriers of AI Adoption and Use in Scientific Research," Papers 2312.09843, arXiv.org, revised Feb 2024.
    16. Hermann, Erik & Puntoni, Stefano, 2024. "Artificial intelligence and consumer behavior: From predictive to generative AI," Journal of Business Research, Elsevier, vol. 180(C).
    17. Nicoleta Mihaela Doran & Gabriela Badareu & Marius Dalian Doran & Maria Enescu & Anamaria Liliana Staicu & Mariana Niculescu, 2024. "Greening Automation: Policy Recommendations for Sustainable Development in AI-Driven Industries," Sustainability, MDPI, vol. 16(12), pages 1-17, June.
    18. Almeida, Derick & Naudé, Wim & Sequeira, Tiago Neves, 2024. "Artificial Intelligence and the Discovery of New Ideas: Is an Economic Growth Explosion Imminent?," IZA Discussion Papers 16766, Institute of Labor Economics (IZA).
    19. Wenhao Wan & Yongzhong Tian & Jinglian Tian & Chengxi Yuan & Yan Cao & Kangning Liu, 2024. "Research Progress in Spatiotemporal Dynamic Simulation of LUCC," Sustainability, MDPI, vol. 16(18), pages 1-18, September.
    20. Singh, Kuldeep & Chatterjee, Sheshadri & Mariani, Marcello, 2024. "Applications of generative AI and future organizational performance: The mediating role of explorative and exploitative innovation and the moderating role of ethical dilemmas and environmental dynamis," Technovation, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:4:p:1411-:d:1587052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.