IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.08442.html
   My bibliography  Save this paper

Assessing the impact of forced and voluntary behavioral changes on economic-epidemiological co-dynamics: A comparative case study between Belgium and Sweden during the 2020 COVID-19 pandemic

Author

Listed:
  • Tijs W. Alleman
  • Jan M. Baetens

Abstract

During the COVID-19 pandemic, governments faced the challenge of managing population behavior to prevent their healthcare systems from collapsing. Sweden adopted a strategy centered on voluntary sanitary recommendations while Belgium resorted to mandatory measures. Their consequences on pandemic progression and associated economic impacts remain insufficiently understood. This study leverages the divergent policies of Belgium and Sweden during the COVID-19 pandemic to relax the unrealistic -- but persistently used -- assumption that social contacts are not influenced by an epidemic's dynamics. We develop an epidemiological-economic co-simulation model where pandemic-induced behavioral changes are a superposition of voluntary actions driven by fear, prosocial behavior or social pressure, and compulsory compliance with government directives. Our findings emphasize the importance of early responses, which reduce the stringency of measures necessary to safeguard healthcare systems and minimize ensuing economic damage. Voluntary behavioral changes lead to a pattern of recurring epidemics, which should be regarded as the natural long-term course of pandemics. Governments should carefully consider prolonging lockdown longer than necessary because this leads to higher economic damage and a potentially higher second surge when measures are released. Our model can aid policymakers in the selection of an appropriate long-term strategy that minimizes economic damage.

Suggested Citation

  • Tijs W. Alleman & Jan M. Baetens, 2024. "Assessing the impact of forced and voluntary behavioral changes on economic-epidemiological co-dynamics: A comparative case study between Belgium and Sweden during the 2020 COVID-19 pandemic," Papers 2401.08442, arXiv.org.
  • Handle: RePEc:arx:papers:2401.08442
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.08442
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Johan Verbeeck & Godelieve Vandersmissen & Jannes Peeters & Sofieke Klamer & Sharon Hancart & Tinne Lernout & Mathias Dewatripont & Lode Godderis & Geert Molenberghs, 2021. "Confirmed COVID-19 Cases per Economic Activity during Autumn Wave in Belgium," IJERPH, MDPI, vol. 18(23), pages 1-12, November.
    2. Anton Pichler & Marco Pangallo & R. Maria del Rio-Chanona & Franc{c}ois Lafond & J. Doyne Farmer, 2020. "Production networks and epidemic spreading: How to restart the UK economy?," Papers 2005.10585, arXiv.org.
    3. Pichler, Anton & Pangallo, Marco & del Rio-Chanona, R. Maria & Lafond, François & Farmer, J. Doyne, 2022. "Forecasting the propagation of pandemic shocks with a dynamic input-output model," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    4. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    5. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tijs W. Alleman & Koen Schoors & Jan M. Baetens, 2023. "Validating a dynamic input-output model for the propagation of supply and demand shocks during the COVID-19 pandemic in Belgium," Papers 2305.16377, arXiv.org, revised Jan 2024.
    2. Marco Pangallo & Alberto Aleta & R. Maria del Rio-Chanona & Anton Pichler & David Martín-Corral & Matteo Chinazzi & François Lafond & Marco Ajelli & Esteban Moro & Yamir Moreno & Alessandro Vespignani, 2024. "The unequal effects of the health–economy trade-off during the COVID-19 pandemic," Nature Human Behaviour, Nature, vol. 8(2), pages 264-275, February.
    3. David J. Haw & Christian Morgenstern & Giovanni Forchini & Robert Johnson & Patrick Doohan & Peter C. Smith & Katharina D. Hauck, 2022. "Data needs for integrated economic-epidemiological models of pandemic mitigation policies," Papers 2209.01487, arXiv.org.
    4. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    5. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    6. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    7. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    8. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    9. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    10. S. M. Niaz Arifin & Christoph Zimmer & Caroline Trotter & Anaïs Colombini & Fati Sidikou & F. Marc LaForce & Ted Cohen & Reza Yaesoubi, 2019. "Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study," Medical Decision Making, , vol. 39(5), pages 553-567, July.
    11. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    12. Mirjam Kretzschmar & Rafael T Mikolajczyk, 2009. "Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-8, June.
    13. Severin Reissl & Alessandro Caiani & Francesco Lamperti & Mattia Guerini & Fabio Vanni & Giorgio Fagiolo & Tommaso Ferraresi & Leonardo Ghezzi & Mauro Napoletano & Andrea Roventini, 2022. "Assessing the Economic Impact of Lockdowns in Italy: A Computational Input–Output Approach [Nonlinear Production Networks with an Application to the Covid-19 Crisis]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(2), pages 358-409.
    14. Andrei I. Vlad & Alexei A. Romanyukha & Tatiana E. Sannikova, 2024. "Parameter Tuning of Agent-Based Models: Metaheuristic Algorithms," Mathematics, MDPI, vol. 12(14), pages 1-21, July.
    15. Elisabetta De Cao & Alessia Melegaro & Rogier Klok & Maarten Postma, 2014. "Optimising Assessments of the Epidemiological Impact in the Netherlands of Paediatric Immunisation with 13-Valent Pneumococcal Conjugate Vaccine Using Dynamic Transmission Modelling," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    16. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    17. Souknilanh Keola & Kazunobu Hayakawa, 2021. "Do Lockdown Policies Reduce Economic and Social Activities? Evidence from NO2 Emissions," The Developing Economies, Institute of Developing Economies, vol. 59(2), pages 178-205, June.
    18. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).
    19. Richard Pitman & David Fisman & Gregory S. Zaric & Maarten Postma & Mirjam Kretzschmar & John Edmunds & Marc Brisson, 2012. "Dynamic Transmission Modeling," Medical Decision Making, , vol. 32(5), pages 712-721, September.
    20. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.08442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.