IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.07427.html
   My bibliography  Save this paper

Quantum-Enhanced Forecasting: Leveraging Quantum Gramian Angular Field and CNNs for Stock Return Predictions

Author

Listed:
  • Zhengmeng Xu
  • Yujie Wang
  • Xiaotong Feng
  • Yilin Wang
  • Yanli Li
  • Hai Lin

Abstract

We propose a time series forecasting method named Quantum Gramian Angular Field (QGAF). This approach merges the advantages of quantum computing technology with deep learning, aiming to enhance the precision of time series classification and forecasting. We successfully transformed stock return time series data into two-dimensional images suitable for Convolutional Neural Network (CNN) training by designing specific quantum circuits. Distinct from the classical Gramian Angular Field (GAF) approach, QGAF's uniqueness lies in eliminating the need for data normalization and inverse cosine calculations, simplifying the transformation process from time series data to two-dimensional images. To validate the effectiveness of this method, we conducted experiments on datasets from three major stock markets: the China A-share market, the Hong Kong stock market, and the US stock market. Experimental results revealed that compared to the classical GAF method, the QGAF approach significantly improved time series prediction accuracy, reducing prediction errors by an average of 25% for Mean Absolute Error (MAE) and 48% for Mean Squared Error (MSE). This research confirms the potential and promising prospects of integrating quantum computing with deep learning techniques in financial time series forecasting.

Suggested Citation

  • Zhengmeng Xu & Yujie Wang & Xiaotong Feng & Yilin Wang & Yanli Li & Hai Lin, 2023. "Quantum-Enhanced Forecasting: Leveraging Quantum Gramian Angular Field and CNNs for Stock Return Predictions," Papers 2310.07427, arXiv.org, revised Dec 2023.
  • Handle: RePEc:arx:papers:2310.07427
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.07427
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jacob Biamonte & Peter Wittek & Nicola Pancotti & Patrick Rebentrost & Nathan Wiebe & Seth Lloyd, 2017. "Quantum machine learning," Nature, Nature, vol. 549(7671), pages 195-202, September.
    2. Yu-Min Lian & Jia-Ling Chen & Hsueh-Chien Cheng, 2022. "Predicting Bitcoin Prices via Machine Learning and Time Series Models," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(5), pages 1-2.
    3. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    4. Charles H. Bennett & David P. DiVincenzo, 2000. "Quantum information and computation," Nature, Nature, vol. 404(6775), pages 247-255, March.
    5. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    6. Jun-Hao Chen & Yun-Cheng Tsai, 2020. "Encoding candlesticks as images for pattern classification using convolutional neural networks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahla Nikou & Gholamreza Mansourfar & Jamshid Bagherzadeh, 2019. "Stock price prediction using DEEP learning algorithm and its comparison with machine learning algorithms," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(4), pages 164-174, October.
    2. Li, Weiping & Mei, Feng, 2020. "Asset returns in deep learning methods: An empirical analysis on SSE 50 and CSI 300," Research in International Business and Finance, Elsevier, vol. 54(C).
    3. Mzaouali, Zakaria & El Baz, Morad, 2019. "Long range quantum coherence, quantum & classical correlations in Heisenberg XX chain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 119-130.
    4. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    5. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    6. Wu, Jiang & Ou, Guiyan & Liu, Xiaohui & Dong, Ke, 2022. "How does academic education background affect top researchers’ performance? Evidence from the field of artificial intelligence," Journal of Informetrics, Elsevier, vol. 16(2).
    7. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    8. Jaydip Sen & Sidra Mehtab & Abhishek Dutta & Saikat Mondal, 2022. "Precise Stock Price Prediction for Optimized Portfolio Design Using an LSTM Model," Papers 2203.01326, arXiv.org.
    9. Deng, S. & Yeh, Tsung-Han, 2011. "Using least squares support vector machines for the airframe structures manufacturing cost estimation," International Journal of Production Economics, Elsevier, vol. 131(2), pages 701-708, June.
    10. Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
    11. Yanqin Bai & Xin Yan, 2016. "Conic Relaxations for Semi-supervised Support Vector Machines," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 299-313, April.
    12. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    13. Adebayo Oshingbesan & Eniola Ajiboye & Peruth Kamashazi & Timothy Mbaka, 2022. "Model-Free Reinforcement Learning for Asset Allocation," Papers 2209.10458, arXiv.org.
    14. Xinbiao Wang & Yuxuan Du & Zhuozhuo Tu & Yong Luo & Xiao Yuan & Dacheng Tao, 2024. "Transition role of entangled data in quantum machine learning," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Rian Dolphin & Barry Smyth & Ruihai Dong, 2024. "Contrastive Learning of Asset Embeddings from Financial Time Series," Papers 2407.18645, arXiv.org.
    16. Junjie Guo, 2024. "Deep Learning in Long-Short Stock Portfolio Allocation: An Empirical Study," Papers 2411.13555, arXiv.org, revised Nov 2024.
    17. Ajagekar, Akshay & You, Fengqi, 2021. "Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems," Applied Energy, Elsevier, vol. 303(C).
    18. Tomoshiro Ochiai & Jose C. Nacher, 2020. "Unveiling the directional network behind the financial statements data using volatility constraint correlation," Papers 2008.07836, arXiv.org, revised Jun 2023.
    19. Junyi Li & Xitong Wang & Yaoyang Lin & Arunesh Sinha & Micheal P. Wellman, 2020. "Generating Realistic Stock Market Order Streams," Papers 2006.04212, arXiv.org.
    20. Zhang, Li-Hua & Yang, Ming & Cao, Zhuo-Liang, 2007. "Entanglement concentration for unknown W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 611-616.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.07427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.