IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v404y2000i6775d10.1038_35005001.html
   My bibliography  Save this article

Quantum information and computation

Author

Listed:
  • Charles H. Bennett

    (T. J. Watson Research Center)

  • David P. DiVincenzo

    (T. J. Watson Research Center)

Abstract

In information processing, as in physics, our classical world view provides an incomplete approximation to an underlying quantum reality. Quantum effects like interference and entanglement play no direct role in conventional information processing, but they can—in principle now, but probably eventually in practice—be harnessed to break codes, create unbreakable codes, and speed up otherwise intractable computations.

Suggested Citation

  • Charles H. Bennett & David P. DiVincenzo, 2000. "Quantum information and computation," Nature, Nature, vol. 404(6775), pages 247-255, March.
  • Handle: RePEc:nat:nature:v:404:y:2000:i:6775:d:10.1038_35005001
    DOI: 10.1038/35005001
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35005001
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35005001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mzaouali, Zakaria & El Baz, Morad, 2019. "Long range quantum coherence, quantum & classical correlations in Heisenberg XX chain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 119-130.
    2. Eied. M. Khalil & Abdel-Baset. A. Mohamed & Abdel-Shafy F. Obada & Hichem Eleuch, 2020. "Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity," Mathematics, MDPI, vol. 8(10), pages 1-11, October.
    3. Khlifi, Y. & Seddik, S. & El Allati, A., 2022. "Steady state entanglement behavior between two quantum refrigerators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Muhammad Junaid Umer & Muhammad Imran Sharif, 2022. "A Comprehensive Survey on Quantum Machine Learning and Possible Applications," International Journal of E-Health and Medical Communications (IJEHMC), IGI Global, vol. 13(5), pages 1-17, October.
    5. Zhang, Li-Hua & Yang, Ming & Cao, Zhuo-Liang, 2007. "Entanglement concentration for unknown W class states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 611-616.
    6. Ait Chlih, Anas & Rahman, Atta ur, 2024. "Nonclassicality and teleportation fidelity probes in amplitude-tailored superconducting charge qubits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    7. Zhengmeng Xu & Yujie Wang & Xiaotong Feng & Yilin Wang & Yanli Li & Hai Lin, 2023. "Quantum-Enhanced Forecasting: Leveraging Quantum Gramian Angular Field and CNNs for Stock Return Predictions," Papers 2310.07427, arXiv.org, revised Dec 2023.
    8. Abhishek Sharma & Marcus Tze-Kiat Ng & Juan Manuel Parrilla Gutierrez & Yibin Jiang & Leroy Cronin, 2024. "A programmable hybrid digital chemical information processor based on the Belousov-Zhabotinsky reaction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Sağlam, Utku & Paternostro, Mauro & Müstecaplıoğlu, Özgür E., 2023. "Entanglement transfer via chiral and continuous-time quantum walks on a triangular chain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    10. A. Rycerz, 2006. "Entanglement and transport through correlated quantum dot," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 52(3), pages 291-296, August.
    11. Wang, Shixin & Feng, Tao, 2023. "Perfect state transfer on weighted bi-Cayley graphs over abelian groups," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    12. Costa, A.C.S. & Beims, M.W. & Angelo, R.M., 2016. "Generalized discord, entanglement, Einstein–Podolsky–Rosen steering, and Bell nonlocality in two-qubit systems under (non-)Markovian channels: Hierarchy of quantum resources and chronology of deaths a," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 469-479.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:404:y:2000:i:6775:d:10.1038_35005001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.