IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.12843.html
   My bibliography  Save this paper

From characteristic functions to multivariate distribution functions and European option prices by the damped COS method

Author

Listed:
  • Gero Junike
  • Hauke Stier

Abstract

We provide a unified framework to obtain numerically certain quantities, such as the distribution function, absolute moments and prices of financial options, from the characteristic function of some (unknown) probability density function using the Fourier-cosine expansion (COS) method. The classical COS method is numerically very efficient in one-dimension, but it cannot deal very well with certain integrands in general dimensions. Therefore, we introduce the damped COS method, which can handle a large class of integrands very efficiently. We prove the convergence of the (damped) COS method and study its order of convergence. The method converges exponentially if the characteristic function decays exponentially. To apply the (damped) COS method, one has to specify two parameters: a truncation range for the multivariate density and the number of terms to approximate the truncated density by a cosine series. We provide an explicit formula for the truncation range and an implicit formula for the number of terms. Numerical experiments up to five dimensions confirm the theoretical results.

Suggested Citation

  • Gero Junike & Hauke Stier, 2023. "From characteristic functions to multivariate distribution functions and European option prices by the damped COS method," Papers 2307.12843, arXiv.org, revised Jun 2024.
  • Handle: RePEc:arx:papers:2307.12843
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.12843
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    2. Gero Junike & Konstantin Pankrashkin, 2021. "Precise option pricing by the COS method--How to choose the truncation range," Papers 2109.01030, arXiv.org, revised Jan 2022.
    3. Marjon Ruijter & Kees Oosterlee, 2012. "Two-dimensional Fourier cosine series expansion method for pricing financial options," CPB Discussion Paper 225, CPB Netherlands Bureau for Economic Policy Analysis.
    4. Gero Junike, 2023. "On the number of terms in the COS method for European option pricing," Papers 2303.16012, arXiv.org, revised Mar 2024.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Behrens & Gero Junike & Wim Schoutens, 2023. "Failure of Fourier pricing techniques to approximate the Greeks," Papers 2306.08421, arXiv.org, revised Nov 2024.
    2. Xiaoyu Shen & Fang Fang & Chengguang Liu, 2024. "The Fourier Cosine Method for Discrete Probability Distributions," Papers 2410.04487, arXiv.org, revised Oct 2024.
    3. Michael Samet & Christian Bayer & Chiheb Ben Hammouda & Antonis Papapantoleon & Ra'ul Tempone, 2022. "Optimal Damping with Hierarchical Adaptive Quadrature for Efficient Fourier Pricing of Multi-Asset Options in L\'evy Models," Papers 2203.08196, arXiv.org, revised Oct 2023.
    4. Gero Junike, 2023. "On the number of terms in the COS method for European option pricing," Papers 2303.16012, arXiv.org, revised Mar 2024.
    5. Zhang, Zhimin & Zhong, Wei, 2024. "Efficient valuation of guaranteed minimum accumulation benefits in regime switching jump diffusion models with lapse risk," Applied Mathematics and Computation, Elsevier, vol. 478(C).
    6. Gijs Mast & Xiaoyu Shen & Fang Fang, 2023. "Fast calculation of Counterparty Credit exposures and associated sensitivities using fourier series expansion," Papers 2311.12575, arXiv.org.
    7. Carole Bernard & Gero Junike & Thibaut Lux & Steven Vanduffel, 2024. "Cost-efficient payoffs under model ambiguity," Finance and Stochastics, Springer, vol. 28(4), pages 965-997, October.
    8. Brignone, Riccardo & Gonzato, Luca, 2024. "Exact simulation of the Hull and White stochastic volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    9. A. Aimi & C. Guardasoni & L. Ortiz-Gracia & S. Sanfelici, 2023. "Fast Barrier Option Pricing by the COS BEM Method in Heston Model," Papers 2301.00648, arXiv.org, revised Jan 2023.
    10. Bertram During & Christian Hendricks & James Miles, 2016. "Sparse grid high-order ADI scheme for option pricing in stochastic volatility models," Papers 1611.01379, arXiv.org.
    11. Hao Zhou & Duy-Minh Dang, 2024. "Numerical analysis of American option pricing in a two-asset jump-diffusion model," Papers 2410.04745, arXiv.org, revised Oct 2024.
    12. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    13. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
    14. Muroi, Yoshifumi & Suda, Shintaro, 2022. "Binomial tree method for option pricing: Discrete cosine transform approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 312-331.
    15. Christian Bayer & Chiheb Ben Hammouda & Antonis Papapantoleon & Michael Samet & Ra'ul Tempone, 2024. "Quasi-Monte Carlo for Efficient Fourier Pricing of Multi-Asset Options," Papers 2403.02832, arXiv.org.
    16. Wenguang Yu & Yaodi Yong & Guofeng Guan & Yujuan Huang & Wen Su & Chaoran Cui, 2019. "Valuing Guaranteed Minimum Death Benefits by Cosine Series Expansion," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    17. Andersson, Kristoffer & Oosterlee, Cornelis W., 2021. "A deep learning approach for computations of exposure profiles for high-dimensional Bermudan options," Applied Mathematics and Computation, Elsevier, vol. 408(C).
    18. Yang, Yang & Su, Wen & Zhang, Zhimin, 2019. "Estimating the discounted density of the deficit at ruin by Fourier cosine series expansion," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 147-155.
    19. Duy-Minh Dang & Hao Zhou, 2024. "A monotone piecewise constant control integration approach for the two-factor uncertain volatility model," Papers 2402.06840, arXiv.org, revised Feb 2024.
    20. Qian Feng & Cornelis W. Oosterlee, 2017. "Computing Credit Valuation Adjustment For Bermudan Options With Wrong Way Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-31, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.12843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.