IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.16012.html
   My bibliography  Save this paper

On the number of terms in the COS method for European option pricing

Author

Listed:
  • Gero Junike

Abstract

The Fourier-cosine expansion (COS) method is used to price European options numerically in a very efficient way. To apply the COS method, one has to specify two parameters: a truncation range for the density of the log-returns and a number of terms N to approximate the truncated density by a cosine series. How to choose the truncation range is already known. Here, we are able to find an explicit and useful bound for N as well for pricing and for the sensitivities, i.e., the Greeks Delta and Gamma, provided the density of the log-returns is smooth. We further show that the COS method has an exponential order of convergence when the density is smooth and decays exponentially. However, when the density is smooth and has heavy tails, as in the Finite Moment Log Stable model, the COS method does not have exponential order of convergence. Numerical experiments confirm the theoretical results.

Suggested Citation

  • Gero Junike, 2023. "On the number of terms in the COS method for European option pricing," Papers 2303.16012, arXiv.org, revised Mar 2024.
  • Handle: RePEc:arx:papers:2303.16012
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.16012
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    3. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    4. A. Aimi & C. Guardasoni & L. Ortiz-Gracia & S. Sanfelici, 2023. "Fast Barrier Option Pricing by the COS BEM Method in Heston Model," Papers 2301.00648, arXiv.org, revised Jan 2023.
    5. Leitao, Álvaro & Oosterlee, Cornelis W. & Ortiz-Gracia, Luis & Bohte, Sander M., 2018. "On the data-driven COS method," Applied Mathematics and Computation, Elsevier, vol. 317(C), pages 68-84.
    6. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.
    7. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    8. Søren Asmussen, 2022. "On the role of skewness and kurtosis in tempered stable (CGMY) Lévy models in finance," Finance and Stochastics, Springer, vol. 26(3), pages 383-416, July.
    9. Dietmar Leisen & Matthias Reimer, 1996. "Binomial models for option valuation - examining and improving convergence," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 319-346.
    10. Gero Junike & Konstantin Pankrashkin, 2021. "Precise option pricing by the COS method--How to choose the truncation range," Papers 2109.01030, arXiv.org, revised Jan 2022.
    11. Madan,Dilip & Schoutens,Wim, 2016. "Applied Conic Finance," Cambridge Books, Cambridge University Press, number 9781107151697, January.
    12. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    13. repec:bla:jfinan:v:58:y:2003:i:2:p:753-778 is not listed on IDEAS
    14. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    15. Marjon Ruijter & Kees Oosterlee, 2012. "Two-dimensional Fourier cosine series expansion method for pricing financial options," CPB Discussion Paper 225, CPB Netherlands Bureau for Economic Policy Analysis.
    16. Florence Guillaume & Gero Junike & Peter Leoni & Wim Schoutens, 2019. "Implied liquidity risk premia in option markets," Annals of Finance, Springer, vol. 15(2), pages 233-246, June.
    17. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyu Shen & Fang Fang & Chengguang Liu, 2024. "The Fourier Cosine Method for Discrete Probability Distributions," Papers 2410.04487, arXiv.org, revised Oct 2024.
    2. Gero Junike & Hauke Stier, 2023. "From characteristic functions to multivariate distribution functions and European option prices by the damped COS method," Papers 2307.12843, arXiv.org, revised Jun 2024.
    3. Tobias Behrens & Gero Junike & Wim Schoutens, 2023. "Failure of Fourier pricing techniques to approximate the Greeks," Papers 2306.08421, arXiv.org, revised Nov 2024.
    4. Gero Junike & Hauke Stier, 2024. "Enhancing Fourier pricing with machine learning," Papers 2412.05070, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    2. Tobias Behrens & Gero Junike & Wim Schoutens, 2023. "Failure of Fourier pricing techniques to approximate the Greeks," Papers 2306.08421, arXiv.org, revised Nov 2024.
    3. Gero Junike & Konstantin Pankrashkin, 2021. "Precise option pricing by the COS method--How to choose the truncation range," Papers 2109.01030, arXiv.org, revised Jan 2022.
    4. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    5. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    6. Oscar Gutierrez, 2008. "Option valuation, time-changed processes and the fast Fourier transform," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 103-108.
    7. Shuang Li & Yanli Zhou & Yonghong Wu & Xiangyu Ge, 2017. "Equilibrium approach of asset and option pricing under Lévy process and stochastic volatility," Australian Journal of Management, Australian School of Business, vol. 42(2), pages 276-295, May.
    8. Göncü, Ahmet & Karahan, Mehmet Oğuz & Kuzubaş, Tolga Umut, 2016. "A comparative goodness-of-fit analysis of distributions of some Lévy processes and Heston model to stock index returns," The North American Journal of Economics and Finance, Elsevier, vol. 36(C), pages 69-83.
    9. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    10. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. F. Cacace & A. Germani & M. Papi, 2019. "On parameter estimation of Heston’s stochastic volatility model: a polynomial filtering method," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 503-525, December.
    12. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    13. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    14. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
    15. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    16. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    17. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    18. Carole Bernard & Gero Junike & Thibaut Lux & Steven Vanduffel, 2024. "Cost-efficient payoffs under model ambiguity," Finance and Stochastics, Springer, vol. 28(4), pages 965-997, October.
    19. Massoud Heidari & Liuren WU, 2002. "Are Interest Rate Derivatives Spanned by the Term Structure of Interest Rates?," Finance 0207013, University Library of Munich, Germany.
    20. Lucio Fiorin & Wim Schoutens, 2020. "Conic quantization: stochastic volatility and market implied liquidity," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 531-542, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.16012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.