Sparse grid high-order ADI scheme for option pricing in stochastic volatility models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
- Bertram During & Michel Fourni'e & Christof Heuer, 2014. "High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids," Papers 1404.5138, arXiv.org.
- Nigel Clarke & Kevin Parrott, 1999. "Multigrid for American option pricing with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 177-195.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
- Marjon Ruijter & Kees Oosterlee, 2012. "Two-dimensional Fourier cosine series expansion method for pricing financial options," CPB Discussion Paper 225, CPB Netherlands Bureau for Economic Policy Analysis.
- Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
- Fournié, Michel & Düring, Bertram & Jüngel, Ansgar, 2004. "Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation," CoFE Discussion Papers 04/02, University of Konstanz, Center of Finance and Econometrics (CoFE).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bertram During & James Miles, 2015. "High-order ADI scheme for option pricing in stochastic volatility models," Papers 1512.02529, arXiv.org.
- Bertram During & Alexander Pitkin, 2017. "High-order compact finite difference scheme for option pricing in stochastic volatility jump models," Papers 1704.05308, arXiv.org, revised Feb 2019.
- Bertram During & Michel Fourni'e & Christof Heuer, 2014. "High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids," Papers 1404.5138, arXiv.org.
- Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
- Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
- Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
- Zhiyuan Pan & Yudong Wang & Li Liu, 2021. "Realized bipower variation, jump components, and option valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1933-1958, December.
- Wan, Xiangwei & Yang, Nian, 2021. "Hermite expansion of transition densities and European option prices for multivariate diffusions with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
- Peter Carr & Andrey Itkin, 2019. "ADOL - Markovian approximation of rough lognormal model," Papers 1904.09240, arXiv.org.
- Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, Department of Economics and Business Economics, Aarhus University.
- Martin Tegnér & Rolf Poulsen, 2018. "Volatility Is Log-Normal—But Not for the Reason You Think," Risks, MDPI, vol. 6(2), pages 1-16, April.
- Michele Leonardo Bianchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2018.
"Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models,"
Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 339-378, March.
- Michele Leonardo Bianchi & Frank J. Fabozzi & Svetlozar T. Rachev, 2014. "Calibrating the Italian smile with time-varying volatility and heavy-tailed models," Temi di discussione (Economic working papers) 944, Bank of Italy, Economic Research and International Relations Area.
- Hu, Jun & Kanniainen, Juho, 2015. "Asymptotic expansion of European options with mean-reverting stochastic volatility dynamics," Finance Research Letters, Elsevier, vol. 14(C), pages 1-10.
- Nicolas Langren'e & Geoffrey Lee & Zili Zhu, 2015. "Switching to non-affine stochastic volatility: A closed-form expansion for the Inverse Gamma model," Papers 1507.02847, arXiv.org, revised Mar 2016.
- Huang, Shoude & Guo, Xunxiang, 2022. "Valuation of European-style vulnerable options under the non-affine stochastic volatility and double exponential jump," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Peter Carr & Sander Willems, 2019. "A lognormal type stochastic volatility model with quadratic drift," Papers 1908.07417, arXiv.org.
- Carol Alexander & Andreas Kaeck, 2012.
"Does model fit matter for hedging? Evidence from FTSE 100 options,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(7), pages 609-638, July.
- Carol Alexander & Andreas Kaeck, 2010. "Does model fit matter for hedging? Evidence from FTSE 100 options," ICMA Centre Discussion Papers in Finance icma-dp2010-05, Henley Business School, University of Reading.
- Wu, Xin-Yu & Ma, Chao-Qun & Wang, Shou-Yang, 2012. "Warrant pricing under GARCH diffusion model," Economic Modelling, Elsevier, vol. 29(6), pages 2237-2244.
- repec:oup:rapstu:v:7:y:2017:i:1:p:2-42. is not listed on IDEAS
- Baldeaux, Jan & Ignatieva, Katja & Platen, Eckhard, 2018.
"Detecting money market bubbles,"
Journal of Banking & Finance, Elsevier, vol. 87(C), pages 369-379.
- Jan Baldeaux & Katja Ignatieva & Eckhard Platen, 2016. "Detecting Money Market Bubbles," Research Paper Series 378, Quantitative Finance Research Centre, University of Technology, Sydney.
- Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2016-11-13 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1611.01379. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.