IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.04819.html
   My bibliography  Save this paper

Perspectives in closed-loop supply chains network design considering risk and uncertainty factors

Author

Listed:
  • Yang Hu

Abstract

Risk and uncertainty in each stage of CLSC have greatly increased the complexity and reduced process efficiency of the closed-loop networks, impeding the sustainable and resilient development of industries and the circular economy. Recently, increasing interest in academia have been raised on the risk and uncertainty analysis of closed-loop supply chain, yet there is no comprehensive review paper focusing on closed-loop network design considering risk and uncertainty. This paper examines previous research on the domain of closed-loop network design under risk and uncertainties to provide constructive prospects for future study. We selected 106 papers published in the Scopus database from the year 2004 to 2022. We analyse the source of risk and uncertainties of the CLSC network and identified appropriate methods for handling uncertainties in addition to algorithms for solving uncertain CLSCND problems. We also illustrate the evolution of objectives for designing a closed-loop supply chain that is expos to risk or uncertainty, and investigate the application of uncertain network design models in practical industry sectors. Finally, we draw proper research gaps for each category and clarify some novel insights for future study. By considering the impacts of risk or uncertainties of different sources on closed-loop supply chain network design, we can approach the economical, sustainable, social, and resilient objectives effectively and efficiently.

Suggested Citation

  • Yang Hu, 2023. "Perspectives in closed-loop supply chains network design considering risk and uncertainty factors," Papers 2306.04819, arXiv.org.
  • Handle: RePEc:arx:papers:2306.04819
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.04819
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    2. Amir Mohammad Fathollahi-Fard & Abbas Ahmadi & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2020. "Sustainable closed-loop supply chain network for an integrated water supply and wastewater collection system under uncertainty," Post-Print hal-03004754, HAL.
    3. Georgiadis, Patroklos & Athanasiou, Efstratios, 2013. "Flexible long-term capacity planning in closed-loop supply chains with remanufacturing," European Journal of Operational Research, Elsevier, vol. 225(1), pages 44-58.
    4. Kim, Taebok & Glock, Christoph H. & Kwon, Yongjang, 2014. "A closed-loop supply chain for deteriorating products under stochastic container return times," Omega, Elsevier, vol. 43(C), pages 30-40.
    5. Polo, Andrés & Peña, Numar & Muñoz, Dairo & Cañón, Adrián & Escobar, John Willmer, 2019. "Robust design of a closed-loop supply chain under uncertainty conditions integrating financial criteria," Omega, Elsevier, vol. 88(C), pages 110-132.
    6. Bimal Kumar Mawandiya & J. K. Jha & Jitesh J. Thakkar, 2020. "Optimal production-inventory policy for closed-loop supply chain with remanufacturing under random demand and return," Operational Research, Springer, vol. 20(3), pages 1623-1664, September.
    7. Keyvanshokooh, Esmaeil & Ryan, Sarah M. & Kabir, Elnaz, 2016. "Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition," European Journal of Operational Research, Elsevier, vol. 249(1), pages 76-92.
    8. Haolan Liao & Qianwang Deng & Yuanrui Wang, 2017. "Optimal Acquisition and Production Policy for End-of-Life Engineering Machinery Recovering in a Joint Manufacturing/Remanufacturing System under Uncertainties in Procurement and Demand," Sustainability, MDPI, vol. 9(3), pages 1-19, February.
    9. Vahdani, Behnam & Tavakkoli-Moghaddam, Reza & Modarres, Mohammad & Baboli, Armand, 2012. "Reliable design of a forward/reverse logistics network under uncertainty: A robust-M/M/c queuing model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1152-1168.
    10. Hamed Soleimani & Mirmehdi Seyyed-Esfahani & Mohsen Akbarpour Shirazi, 2016. "A new multi-criteria scenario-based solution approach for stochastic forward/reverse supply chain network design," Annals of Operations Research, Springer, vol. 242(2), pages 399-421, July.
    11. Piyawat Chanintrakul & Adrian E. Coronado Mondragon & Chandra Lalwani & Chee Yew Wong, 2009. "Reverse logistics network design: a state-of-the-art literature review," International Journal of Business Performance and Supply Chain Modelling, Inderscience Enterprises Ltd, vol. 1(1), pages 61-81.
    12. Tao, Yi & Wu, Jianhuang & Lai, Xiaofan & Wang, Fan, 2020. "Network planning and operation of sustainable closed-loop supply chains in emerging markets: Retail market configurations and carbon policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    13. Kim, T. & Glock, C. H. & Kwon, Y., 2014. "A closed-loop supply chain for deteriorating products under stochastic container return times," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62024, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    14. Zied Jemai & Rim Jerbia & Mouna Kchaou Boujelben & Mohamed Amine Sehli & Mohamed Amine Sehli, 2018. "A stochastic closed-loop supply chain network design problem with multiple recovery options," Post-Print hal-01742193, HAL.
    15. A Fallah-Tafti & Rashed Sahraeian & Reza Tavakkoli-Moghaddam & Masoud Moeinipour, 2014. "An interactive possibilistic programming approach for a multi-objective closed-loop supply chain network under uncertainty," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(3), pages 283-299.
    16. Surya Prakash & Gunjan Soni & Ajay Pal Singh Rathore, 2017. "Multi-echelon closed-loop supply chain network design and configuration under supply risks and logistics risks," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 28(1), pages 1-23.
    17. Lu Zhen & Qiuji Sun & Kai Wang & Xiaotian Zhang, 2019. "Facility location and scale optimisation in closed-loop supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 57(24), pages 7567-7585, December.
    18. Abdolmajid Yolmeh & Ullah Saif, 2021. "Closed-loop supply chain network design integrated with assembly and disassembly line balancing under uncertainty: an enhanced decomposition approach," International Journal of Production Research, Taylor & Francis Journals, vol. 59(9), pages 2690-2707, May.
    19. Dapeng Yang & Daqing Wu & Luyan Shi, 2019. "Distribution-Free Stochastic Closed-Loop Supply Chain Design Problem with Financial Management," Sustainability, MDPI, vol. 11(5), pages 1-23, February.
    20. Zahra Ghasemzadeh & Ahmad Sadeghieh & Davood Shishebori, 2021. "A stochastic multi-objective closed-loop global supply chain concerning waste management: a case study of the tire industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5794-5821, April.
    21. Haddadsisakht, Ali & Ryan, Sarah M., 2018. "Closed-loop supply chain network design with multiple transportation modes under stochastic demand and uncertain carbon tax," International Journal of Production Economics, Elsevier, vol. 195(C), pages 118-131.
    22. Kenné, Jean-Pierre & Dejax, Pierre & Gharbi, Ali, 2012. "Production planning of a hybrid manufacturing–remanufacturing system under uncertainty within a closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 135(1), pages 81-93.
    23. Mohamadreza Fazli-Khalaf & Bahman Naderi & Mohammad Mohammadi & Mir Saman Pishvaee, 2021. "The design of a resilient and sustainable maximal covering closed-loop supply chain network under hybrid uncertainties: a case study in tire industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 9949-9973, July.
    24. Komeyl Baghizadeh & Julia Pahl & Guiping Hu, 2021. "Closed-Loop Supply Chain Design with Sustainability Aspects and Network Resilience under Uncertainty: Modelling and Application," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-23, September.
    25. Saedinia, R. & Vahdani, Behnam & Etebari, F. & Afshar Nadjafi, B., 2019. "Robust gasoline closed loop supply chain design with redistricting, service sharing and intra-district service transfer," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 121-141.
    26. Qiang, Qiang & Ke, Ke & Anderson, Trisha & Dong, June, 2013. "The closed-loop supply chain network with competition, distribution channel investment, and uncertainties," Omega, Elsevier, vol. 41(2), pages 186-194.
    27. Aijun Liu & Yan Zhang & Senhao Luo & Jie Miao, 2020. "Dual-Channel Global Closed-Loop Supply Chain Network Optimization Based on Random Demand and Recovery Rate," IJERPH, MDPI, vol. 17(23), pages 1-32, November.
    28. Hongtao Ren & Wenji Zhou & Ying Guo & Lizhen Huang & Yongping Liu & Yadong Yu & Liyun Hong & Tieju Ma, 2020. "A GIS-based green supply chain model for assessing the effects of carbon price uncertainty on plastic recycling," International Journal of Production Research, Taylor & Francis Journals, vol. 58(6), pages 1705-1723, March.
    29. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    30. Jian Zhou & Wenying Xia & Ke Wang & Hui Li & Qianyu Zhang, 2020. "Fuzzy Bi-Objective Closed-Loop Supply Chain Network Design Problem with Multiple Recovery Options," Sustainability, MDPI, vol. 12(17), pages 1-26, August.
    31. Surya Prakash & Sameer Kumar & Gunjan Soni & Vipul Jain & Ajay Pal Singh Rathore, 2020. "Closed-loop supply chain network design and modelling under risks and demand uncertainty: an integrated robust optimization approach," Annals of Operations Research, Springer, vol. 290(1), pages 837-864, July.
    32. Tang, Christopher S., 2006. "Perspectives in supply chain risk management," International Journal of Production Economics, Elsevier, vol. 103(2), pages 451-488, October.
    33. Seyed Babak Ebrahimi & Ehsan Bagheri, 2022. "A multi-objective formulation for the closed-loop plastic supply chain under uncertainty," Operational Research, Springer, vol. 22(5), pages 4725-4768, November.
    34. Ming Liu & Rongfan Liu & Zhanguo Zhu & Chengbin Chu & Xiaoyi Man, 2018. "A Bi-Objective Green Closed Loop Supply Chain Design Problem with Uncertain Demand," Sustainability, MDPI, vol. 10(4), pages 1-22, March.
    35. Zongsheng Huang & Jiajia Nie & Sang-Bing Tsai, 2017. "Dynamic Collection Strategy and Coordination of a Remanufacturing Closed-Loop Supply Chain under Uncertainty," Sustainability, MDPI, vol. 9(5), pages 1-18, April.
    36. Xin Zhang & Gang Zhao & Yingxiu Qi & Botang Li, 2019. "A Robust Fuzzy Optimization Model for Closed-Loop Supply Chain Networks Considering Sustainability," Sustainability, MDPI, vol. 11(20), pages 1-24, October.
    37. Masoud Alinezhad & Iraj Mahdavi & Milad Hematian & Erfan Babaee Tirkolaee, 2022. "A fuzzy multi-objective optimization model for sustainable closed-loop supply chain network design in food industries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8779-8806, June.
    38. Reddy, K. Nageswara & Kumar, Akhilesh & Choudhary, Alok & Cheng, T. C. Edwin, 2022. "Multi-period green reverse logistics network design: An improved Benders-decomposition-based heuristic approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 735-752.
    39. Jeihoonian, Mohammad & Kazemi Zanjani, Masoumeh & Gendreau, Michel, 2017. "Closed-loop supply chain network design under uncertain quality status: Case of durable products," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 470-486.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luttiely Santos Oliveira & Ricardo Luiz Machado, 2021. "Application of optimization methods in the closed-loop supply chain: a literature review," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 357-400, February.
    2. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    3. Simonetto, Marco & Sgarbossa, Fabio & Battini, Daria & Govindan, Kannan, 2022. "Closed loop supply chains 4.0: From risks to benefits through advanced technologies. A literature review and research agenda," International Journal of Production Economics, Elsevier, vol. 253(C).
    4. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    5. Ali Pedram & Shahryar Sorooshian & Freselam Mulubrhan & Afshin Abbaspour, 2023. "Incorporating Vehicle-Routing Problems into a Closed-Loop Supply Chain Network Using a Mixed-Integer Linear-Programming Model," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    6. Reddy, K. Nageswara & Kumar, Akhilesh & Choudhary, Alok & Cheng, T. C. Edwin, 2022. "Multi-period green reverse logistics network design: An improved Benders-decomposition-based heuristic approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 735-752.
    7. Zhang, Abraham & Wang, Jason X. & Farooque, Muhammad & Wang, Yulan & Choi, Tsan-Ming, 2021. "Multi-dimensional circular supply chain management: A comparative review of the state-of-the-art practices and research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    8. Bahman Naderi & Kannan Govindan & Hamed Soleimani, 2020. "A Benders decomposition approach for a real case supply chain network design with capacity acquisition and transporter planning: wheat distribution network," Annals of Operations Research, Springer, vol. 291(1), pages 685-705, August.
    9. Tosarkani, Babak Mohamadpour & Amin, Saman Hassanzadeh & Zolfagharinia, Hossein, 2020. "A scenario-based robust possibilistic model for a multi-objective electronic reverse logistics network," International Journal of Production Economics, Elsevier, vol. 224(C).
    10. Abdul Salam Khan & Catalin Iulian Pruncu & Razaullah Khan & Khawar Naeem & Abdul Ghaffar & Pakeeza Ashraf & Shah Room, 2020. "A Trade-off Analysis of Economic and Environmental Aspects of a Disruption Based Closed-Loop Supply Chain Network," Sustainability, MDPI, vol. 12(17), pages 1-28, August.
    11. Zhang, Yanzi & Berenguer, Gemma & Zhang, Zhi-Hai, 2024. "A subsidized reverse supply chain in the Chinese electronics industry," Omega, Elsevier, vol. 122(C).
    12. Saedinia, R. & Vahdani, Behnam & Etebari, F. & Afshar Nadjafi, B., 2019. "Robust gasoline closed loop supply chain design with redistricting, service sharing and intra-district service transfer," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 121-141.
    13. Jiafu Su & Chi Li & Qingjun Zeng & Jiaquan Yang & Jie Zhang, 2019. "A Green Closed-Loop Supply Chain Coordination Mechanism Based on Third-Party Recycling," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    14. Maiti, T. & Giri, B.C., 2017. "Two-way product recovery in a closed-loop supply chain with variable markup under price and quality dependent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 259-272.
    15. Zongsheng Huang, 2020. "Stochastic Differential Game in the Closed-Loop Supply Chain with Fairness Concern Retailer," Sustainability, MDPI, vol. 12(8), pages 1-21, April.
    16. Xin Zhang & Gang Zhao & Yingxiu Qi & Botang Li, 2019. "A Robust Fuzzy Optimization Model for Closed-Loop Supply Chain Networks Considering Sustainability," Sustainability, MDPI, vol. 11(20), pages 1-24, October.
    17. Hamed Soleimani & Prem Chhetri & Amir M. Fathollahi-Fard & S. M. J. Mirzapour Al-e-Hashem & Shahrooz Shahparvari, 2022. "Sustainable closed-loop supply chain with energy efficiency: Lagrangian relaxation, reformulations and heuristics," Annals of Operations Research, Springer, vol. 318(1), pages 531-556, November.
    18. Mingqiang Yin & Min Huang & Xiaohu Qian & Dazhi Wang & Xingwei Wang & Loo Hay Lee, 2023. "Fourth-party logistics network design with service time constraint under stochastic demand," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1203-1227, March.
    19. Diabat, Ali & Jebali, Aida, 2021. "Multi-product and multi-period closed loop supply chain network design under take-back legislation," International Journal of Production Economics, Elsevier, vol. 231(C).
    20. Jianmin Xiao & Zongsheng Huang, 2019. "A Stochastic Differential Game in the Closed-Loop Supply Chain with Third-Party Collecting and Fairness Concerns," Sustainability, MDPI, vol. 11(8), pages 1-17, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.04819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.