IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i4d10.1007_s10668-020-00847-2.html
   My bibliography  Save this article

A stochastic multi-objective closed-loop global supply chain concerning waste management: a case study of the tire industry

Author

Listed:
  • Zahra Ghasemzadeh

    (Yazd University)

  • Ahmad Sadeghieh

    (Yazd University)

  • Davood Shishebori

    (Yazd University)

Abstract

Today, growth in the population and the use of vehicles have led to a growth in the production of waste tires and subsequently the creation of environmental concerns. Thus, choosing common strategies (such as retreading, recycling, burning, and disposal) to deal with these wastes and improve environmental conditions has become one of the most significant concerns of today's industries. In this study, a mixed-integer linear programming model has been used to develop a stochastic closed-loop supply chain network design (SCND). The proposed formulation has two objectives: (i) minimizing Eco-indicator 99 and (ii) maximizing profit in a multi-product, multi-echelon, and multi-period problem for tires. It is implemented in a practical case study in tire production industry. Also, uncertain parameters such as the return rate of products, demand, and the percentage of tire material provided by external suppliers are considered as possible scenarios. The improved version of the augmented ɛ-constraint, named AUGMECON2, is applied to solve the proposed problem. Finally, comprehensive sensitivity analysis is carried out to measure the efficiency. Obtained results represent that concerning global factors, an optimal closed-loop SCND can be very different and the problem is sensitive to the customs duty rate and exchange rate parameters. Besides, without considering the limitations of supplying raw materials by external suppliers, profits can increase by about 12%.

Suggested Citation

  • Zahra Ghasemzadeh & Ahmad Sadeghieh & Davood Shishebori, 2021. "A stochastic multi-objective closed-loop global supply chain concerning waste management: a case study of the tire industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5794-5821, April.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00847-2
    DOI: 10.1007/s10668-020-00847-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00847-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00847-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Songsong & Papageorgiou, Lazaros G., 2013. "Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry," Omega, Elsevier, vol. 41(2), pages 369-382.
    2. Laurens G. Debo & Luk N. Wassenhove, 2005. "Tire recovery: the RetreadCo case," Springer Books, in: Simme Douwe P. Flapper & Jo A.E.E. Nunen & Luk N. Wassenhove (ed.), Managing Closed-Loop Supply Chains, chapter 11, pages 119-128, Springer.
    3. Emad Sane Zerang & Ata Allah Taleizadeh & Jafar Razmi, 2018. "Analytical comparisons in a three-echelon closed-loop supply chain with price and marketing effort-dependent demand: game theory approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 451-478, February.
    4. Lee, Seungrae & Park, Seung Jae & Seshadri, Sridhar, 2017. "Plant location and inventory level decisions in global supply chains: Evidence from Korean firms," European Journal of Operational Research, Elsevier, vol. 262(1), pages 163-179.
    5. Natalia M. Gusmerotti & Filippo Corsini & Alessandra Borghini & Marco Frey, 2019. "Assessing the role of preparation for reuse in waste-prevention strategies by analytical hierarchical process: suggestions for an optimal implementation in waste management supply chain," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(6), pages 2773-2792, December.
    6. Sophia Panagiotidou & George Tagaras, 2005. "End-of-life tire recovery: the Thessaloniki initiative," Springer Books, in: Simme Douwe P. Flapper & Jo A.E.E. Nunen & Luk N. Wassenhove (ed.), Managing Closed-Loop Supply Chains, chapter 17, pages 183-193, Springer.
    7. J. S. Yadav & S. K. Tiwari, 2019. "The impact of end-of-life tires on the mechanical properties of fine-grained soil: A Review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 485-568, April.
    8. Meixell, Mary J. & Gargeya, Vidyaranya B., 2005. "Global supply chain design: A literature review and critique," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(6), pages 531-550, November.
    9. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    10. Morris A. Cohen & Hau L. Lee, 2020. "Designing the Right Global Supply Chain Network," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 15-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Essam Kaoud & Mohammad A. M. Abdel-Aal & Tatsuhiko Sakaguchi & Naoki Uchiyama, 2022. "Robust Optimization for a Bi-Objective Green Closed-Loop Supply Chain with Heterogeneous Transportation System and Presorting Consideration," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    2. Xuan Zhao & Benhong Peng & Chaoyu Zheng & Anxia Wan, 2022. "Closed-loop supply chain pricing strategy for electric vehicle batteries recycling in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7725-7752, June.
    3. Leonel J. R. Nunes & Laura Guimarães & Miguel Oliveira & Peter Kille & Nuno G. C. Ferreira, 2022. "Thermochemical Conversion Processes as a Path for Sustainability of the Tire Industry: Carbon Black Recovery Potential in a Circular Economy Approach," Clean Technol., MDPI, vol. 4(3), pages 1-16, July.
    4. Masoud Alinezhad & Iraj Mahdavi & Milad Hematian & Erfan Babaee Tirkolaee, 2022. "A fuzzy multi-objective optimization model for sustainable closed-loop supply chain network design in food industries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8779-8806, June.
    5. Yang Hu, 2023. "Perspectives in closed-loop supply chains network design considering risk and uncertainty factors," Papers 2306.04819, arXiv.org.
    6. Chunlin Xin & Jie Wang & Ziping Wang & Chia-Huei Wu & Muhammad Nawaz & Sang-Bing Tsai, 2022. "Reverse logistics research of municipal hazardous waste: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1495-1531, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Mehdi, Er Raqabi & Ilyas, Himmich & Nizar, El Hachemi & Issmaïl, El Hallaoui & François, Soumis, 2023. "Incremental LNS framework for integrated production, inventory, and vessel scheduling: Application to a global supply chain," Omega, Elsevier, vol. 116(C).
    2. Yang, Yuxiang & Goodarzi, Shadi & Jabbarzadeh, Armin & Fahimnia, Behnam, 2022. "In-house production and outsourcing under different emissions reduction regulations: An equilibrium decision model for global supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    3. Al-Husain, Raed & Khorramshahgol, Reza, 2020. "Incorporating analytical hierarchy process and goal programming to design responsive and efficient supply chains," Operations Research Perspectives, Elsevier, vol. 7(C).
    4. Häntsch, Marius & Huchzermeier, Arnd, 2016. "Transparency of risk for global and complex network decisions in the automotive industry," International Journal of Production Economics, Elsevier, vol. 175(C), pages 81-95.
    5. Kanokporn Kungwalsong & Abraham Mendoza & Vasanth Kamath & Subramanian Pazhani & Jose Antonio Marmolejo-Saucedo, 2022. "An application of interactive fuzzy optimization model for redesigning supply chain for resilience," Annals of Operations Research, Springer, vol. 315(2), pages 1803-1839, August.
    6. Xiaoyan Xu & Suresh P. Sethi & Sai‐Ho Chung & Tsan‐Ming Choi, 2023. "Reforming global supply chain management under pandemics: The GREAT‐3Rs framework," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 524-546, February.
    7. Alexandros Nikas & Angelos Fountoulakis & Aikaterini Forouli & Haris Doukas, 2022. "A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems," Operational Research, Springer, vol. 22(2), pages 1291-1332, April.
    8. Waleed Rashad & Zlatko Nedelko, 2020. "Global Sourcing Strategies: A Framework for Lean, Agile, and Leagile," Sustainability, MDPI, vol. 12(17), pages 1-29, September.
    9. Pereira, Daniel Filipe & Oliveira, José Fernando & Carravilla, Maria Antónia, 2022. "Merging make-to-stock/make-to-order decisions into sales and operations planning: A multi-objective approach," Omega, Elsevier, vol. 107(C).
    10. Sahebjamnia, Navid & Torabi, S. Ali & Mansouri, S. Afshin, 2018. "Building organizational resilience in the face of multiple disruptions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 63-83.
    11. Jabbarzadeh, Armin & Azad, Nader & Verma, Manish, 2020. "An optimization approach to planning rail hazmat shipments in the presence of random disruptions," Omega, Elsevier, vol. 96(C).
    12. Xinbo Zhang & Shuai Huang & Zhong Wan, 2018. "Stochastic programming approach to global supply chain management under random additive demand," Operational Research, Springer, vol. 18(2), pages 389-420, July.
    13. Ziping Wang & Feng Cheng & Jingxian Chen & Dong-Qing Yao, 2023. "Offshoring or reshoring: the impact of tax regulations on operations strategies," Annals of Operations Research, Springer, vol. 326(1), pages 317-339, July.
    14. Jing, Rui & Wang, Meng & Liang, Hao & Wang, Xiaonan & Li, Ning & Shah, Nilay & Zhao, Yingru, 2018. "Multi-objective optimization of a neighborhood-level urban energy network: Considering Game-theory inspired multi-benefit allocation constraints," Applied Energy, Elsevier, vol. 231(C), pages 534-548.
    15. Zhen, Lu, 2014. "A three-stage optimization model for production and outsourcing under China’s export-oriented tax policies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 1-20.
    16. Jabbarzadeh, Armin & Haughton, Michael & Pourmehdi, Fahime, 2019. "A robust optimization model for efficient and green supply chain planning with postponement strategy," International Journal of Production Economics, Elsevier, vol. 214(C), pages 266-283.
    17. Jing, Rui & Kuriyan, Kamal & Kong, Qingyuan & Zhang, Zhihui & Shah, Nilay & Li, Ning & Zhao, Yingru, 2019. "Exploring the impact space of different technologies using a portfolio constraint based approach for multi-objective optimization of integrated urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Wang, Mengyue & Huang, Hongxuan, 2019. "The design of a flexible capital-constrained global supply chain by integrating operational and financial strategies," Omega, Elsevier, vol. 88(C), pages 40-62.
    19. Panos Xidonas & Haris Doukas & George Mavrotas & Olena Pechak, 2016. "Environmental corporate responsibility for investments evaluation: an alternative multi-objective programming model," Annals of Operations Research, Springer, vol. 247(2), pages 395-413, December.
    20. Viswanathan Nagarajan & Prateek Sharma, 2021. "Firm internationalization and long‐term impact of the Covid‐19 pandemic," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(6), pages 1477-1491, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00847-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.