IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2304.06060.html
   My bibliography  Save this paper

European Option Pricing Under Generalized Tempered Stable Process: Empirical Analysis

Author

Listed:
  • A. H. Nzokem

Abstract

The paper investigates the performance of the European option price when the log asset price follows a rich class of Generalized Tempered Stable (GTS) distribution. The GTS distribution is an alternative to Normal distribution and $\alpha$-stable distribution for modeling asset return and many physical and economic systems. The data used in the option pricing computation comes from fitting the GTS distribution to the underlying S\&P 500 Index return distribution. The Esscher transform method shows that the GTS distribution preserves its structure. The extended Black-Scholes formula and the Generalized Black-Scholes Formula are applied in the study. The 12-point rule Composite Newton-Cotes Quadrature and the Fractional Fast Fourier (FRFT) algorithms were implemented and they yield the same European option price at two decimal places. Compared to the option price under the GTS distribution, the Black-Scholes (BS) model is underpriced for the near-the-Money (NTM) and the in-the-money (ITM) options. However, the BS model and GTS European options yield the same option price for the deep out-of-the-money (OTM) and the deep-in-the-money (ITM) options.

Suggested Citation

  • A. H. Nzokem, 2023. "European Option Pricing Under Generalized Tempered Stable Process: Empirical Analysis," Papers 2304.06060, arXiv.org, revised Aug 2023.
  • Handle: RePEc:arx:papers:2304.06060
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2304.06060
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aubain Hilaire Nzokem, 2023. "Pricing European Options under Stochastic Volatility Models: Case of Five-Parameter Variance-Gamma Process," JRFM, MDPI, vol. 16(1), pages 1-28, January.
    2. A. H. Nzokem, 2022. "Pricing European Options under Stochastic Volatility Models: Case of five-Parameter Variance-Gamma Process," Papers 2201.03378, arXiv.org, revised Jan 2023.
    3. Sharif Mozumder & Ghulam Sorwar & Kevin Dowd, 2015. "Revisiting variance gamma pricing: An application to S&P500 index options," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-24.
    4. Küchler, Uwe & Tappe, Stefan, 2013. "Tempered stable distributions and processes," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4256-4293.
    5. A. H. Nzokem & V. T. Montshiwa, 2022. "Fitting Generalized Tempered Stable distribution: Fractional Fourier Transform (FRFT) Approach," Papers 2205.00586, arXiv.org, revised Jun 2022.
    6. Michael Grabchak & Gennady Samorodnitsky, 2010. "Do financial returns have finite or infinite variance? A paradox and an explanation," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 883-893.
    7. A.H. Nzokem, 2021. "SIS Epidemic Model Birth-and-Death Markov Chain Approach," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(4), pages 1-10, July.
    8. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. H. Nzokem, 2023. "Bitcoin versus S&P 500 Index: Return and Risk Analysis," Papers 2310.02436, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. H. Nzokem, 2023. "Bitcoin versus S&P 500 Index: Return and Risk Analysis," Papers 2310.02436, arXiv.org.
    2. A. H. Nzokem, 2022. "Pricing European Options under Stochastic Volatility Models: Case of five-Parameter Variance-Gamma Process," Papers 2201.03378, arXiv.org, revised Jan 2023.
    3. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    4. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    5. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    6. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    7. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    8. Richard Jordan & Charles Tier, 2016. "Asymptotic Approximations For Pricing Derivatives Under Mean-Reverting Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-31, August.
    9. Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Discussion Papers ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, July.
    11. Jinglun Yao & Sabine Laurent & Brice B'enaben, 2017. "Managing Volatility Risk: An Application of Karhunen-Lo\`eve Decomposition and Filtered Historical Simulation," Papers 1710.00859, arXiv.org.
    12. Nteukam T., Oberlain & Planchet, Frédéric & Thérond, Pierre-E., 2011. "Optimal strategies for hedging portfolios of unit-linked life insurance contracts with minimum death guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 161-175, March.
    13. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    14. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2019. "Complex and composite entropy fluctuation behaviors of statistical physics interacting financial model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 97-113.
    15. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    16. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    17. Detlefsen, Kai & Härdle, Wolfgang Karl & Moro, Rouslan A., 2007. "Empirical pricing kernels and investor preferences," SFB 649 Discussion Papers 2007-017, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Andrea Di Iura & Giulia Terenzi, 2022. "A Bayesian analysis of gain-loss asymmetry," SN Business & Economics, Springer, vol. 2(5), pages 1-23, May.
    19. Ricardo Crisóstomo, 2017. "Speed and biases of Fourier-based pricing choices: Analysis of the Bates and Asymmetric Variance Gamma models," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    20. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.06060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.