IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v490y2018icp402-418.html
   My bibliography  Save this article

Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion

Author

Listed:
  • Zhang, Wei-Guo
  • Li, Zhe
  • Liu, Yong-Jun

Abstract

In this paper, we study the pricing problem of the continuously monitored fixed and floating strike geometric Asian power options in a mixed fractional Brownian motion environment. First, we derive both closed-form solutions and mixed fractional partial differential equations for fixed and floating strike geometric Asian power options based on delta-hedging strategy and partial differential equation method. Second, we present the lower and upper bounds of the prices of fixed and floating strike geometric Asian power options under the assumption that both risk-free interest rate and volatility are interval numbers. Finally, numerical studies are performed to illustrate the performance of our proposed pricing model.

Suggested Citation

  • Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
  • Handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:402-418
    DOI: 10.1016/j.physa.2017.08.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117307999
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.08.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    2. Kim, Jerim & Kim, Bara & Moon, Kyoung-Sook & Wee, In-Suk, 2012. "Valuation of power options under Heston's stochastic volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(11), pages 1796-1813.
    3. Huang, Teng-Ching & Tu, Yu-Chen & Chou, Heng-Chih, 2015. "Long memory and the relation between options and stock prices," Finance Research Letters, Elsevier, vol. 12(C), pages 77-91.
    4. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    5. Yue-Kuen Kwok & Hoi-Ying Wong, 2000. "Currency-Translated Foreign Equity Options With Path Dependent Features And Their Multi-Asset Extensions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 257-278.
    6. Min Dai, 2003. "One-state variable binomial models for European-/American-style geometric Asian options," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 288-295.
    7. Fusai, Gianluca & Meucci, Attilio, 2008. "Pricing discretely monitored Asian options under Levy processes," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2076-2088, October.
    8. Yoshida, Yuji, 2003. "The valuation of European options in uncertain environment," European Journal of Operational Research, Elsevier, vol. 145(1), pages 221-229, February.
    9. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    10. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "Risk preference, option pricing and portfolio hedging with proportional transaction costs," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 111-130.
    11. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    12. Ning Cai & Yingda Song & Steven Kou, 2015. "A General Framework for Pricing Asian Options Under Markov Processes," Operations Research, INFORMS, vol. 63(3), pages 540-554, June.
    13. Chung, Shing Fung & Wong, Hoi Ying, 2014. "Analytical pricing of discrete arithmetic Asian options with mean reversion and jumps," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 130-140.
    14. Cajueiro, Daniel O. & Tabak, Benjamin M., 2007. "Long-range dependence and multifractality in the term structure of LIBOR interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 603-614.
    15. Alziary, Benedicte & Decamps, Jean-Paul & Koehl, Pierre-Francois, 1997. "A P.D.E. approach to Asian options: analytical and numerical evidence," Journal of Banking & Finance, Elsevier, vol. 21(5), pages 613-640, May.
    16. Cen, Zhongdi & Xu, Aimin & Le, Anbo, 2015. "A hybrid finite difference scheme for pricing Asian options," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 229-239.
    17. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach to compute the first-passage probability density function in a time-changed Brownian model: Applications in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 330-344.
    18. Vadim Linetsky, 2004. "Spectral Expansions for Asian (Average Price) Options," Operations Research, INFORMS, vol. 52(6), pages 856-867, December.
    19. Lixin Wu & Yue Kuen Kwok & Hong Yu, 1999. "Asian Options With The American Early Exercise Feature," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 101-111.
    20. L. C. G. Rogers, 1997. "Arbitrage with Fractional Brownian Motion," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 95-105, January.
    21. Boris Podobnik & Duan Wang & H. Eugene Stanley, 2012. "High-frequency trading model for a complex trading hierarchy," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 559-566, October.
    22. Yong-Jun Liu & Wei-Guo Zhang & Jun-Bo Wang, 2016. "Multi-period cardinality constrained portfolio selection models with interval coefficients," Annals of Operations Research, Springer, vol. 244(2), pages 545-569, September.
    23. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    24. Prakasa Rao, B.L.S., 2016. "Pricing geometric Asian power options under mixed fractional Brownian motion environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 92-99.
    25. Wang, Xingchun, 2016. "Pricing power exchange options with correlated jump risk," Finance Research Letters, Elsevier, vol. 19(C), pages 90-97.
    26. Hoi Ying Wong & Ying Lok Cheung, 2004. "Geometric Asian options: valuation and calibration with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 301-314.
    27. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    28. Ewald, Christian-Oliver & Menkens, Olaf & Hung Marten Ting, Sai, 2013. "Asian and Australian options: A common perspective," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1001-1018.
    29. El-Nouty, Charles, 2003. "The fractional mixed fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 65(2), pages 111-120, November.
    30. C. Brown & J. C. Handley & C.-T. Lin & K. J. Palmer, 2016. "Partial differential equations for Asian option prices," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 447-460, March.
    31. Nowak, Piotr & Romaniuk, Maciej, 2010. "Computing option price for Levy process with fuzzy parameters," European Journal of Operational Research, Elsevier, vol. 201(1), pages 206-210, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Chunhao & Cheng, Xuwen & Xiao, Weilin & Wu, Xiang, 2019. "Parameter identification for mixed fractional Brownian motions with the drift parameter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    2. Zhou, Qing & Zhang, Xili, 2020. "Pricing equity warrants in Merton jump–diffusion model with credit risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    3. Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    4. Foad Shokrollahi & Davood Ahmadian & Luca Vincenzo Ballestra, 2021. "Actuarial strategy for pricing Asian options under a mixed fractional Brownian motion with jumps," Papers 2105.06999, arXiv.org.
    5. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, February.
    6. Dastranj, Elham & Sahebi Fard, Hossein & Abdolbaghi, Abdolmajid & Reza Hejazi, S., 2020. "Power option pricing under the unstable conditions (Evidence of power option pricing under fractional Heston model in the Iran gold market)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Wei-Guo Zhang & Zhe Li & Yong-Jun Liu & Yue Zhang, 2021. "Pricing European Option Under Fuzzy Mixed Fractional Brownian Motion Model with Jumps," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 483-515, August.
    8. Lu, Ziqiang & Zhu, Yuanguo & Li, Bo, 2019. "Critical value-based Asian option pricing model for uncertain financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 694-703.
    9. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "Analytical valuation for geometric Asian options in illiquid markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 175-191.
    10. Shokrollahi, F. & Ahmadian, D. & Ballestra, L.V., 2024. "Pricing Asian options under the mixed fractional Brownian motion with jumps," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 172-183.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei-Guo Zhang & Zhe Li & Yong-Jun Liu & Yue Zhang, 2021. "Pricing European Option Under Fuzzy Mixed Fractional Brownian Motion Model with Jumps," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 483-515, August.
    2. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    3. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun, 2018. "Analytical valuation for geometric Asian options in illiquid markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 175-191.
    4. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, February.
    5. Susana Alvarez Diez & Samuel Baixauli & Luis Eduardo Girón, 2019. "Valoración de opciones call asiáticas Promedio Aritmético usando Taylor Estocástico 1.5," Working Papers 44, Faculty of Economics and Management, Pontificia Universidad Javeriana Cali.
    6. Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    7. Kim, Kyong-Hui & Yun, Sim & Kim, Nam-Ung & Ri, Ju-Hyuang, 2019. "Pricing formula for European currency option and exchange option in a generalized jump mixed fractional Brownian motion with time-varying coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 215-231.
    8. Jian Pan & Xiangying Zhou, 2017. "Pricing for options in a mixed fractional Hull–White interest rate model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-15, March.
    9. Kailin Ding & Zhenyu Cui & Xiaoguang Yang, 2023. "Pricing arithmetic Asian and Amerasian options: A diffusion operator integral expansion approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(2), pages 217-241, February.
    10. Susana Alvarez Diez & Samuel Baixauli & Luis Eduardo Girón, 2019. "Valoración de Opciones Call Asiáticas Promedio Aritmético bajo Movimiento Browniano Logístico," Working Papers 46, Faculty of Economics and Management, Pontificia Universidad Javeriana Cali.
    11. Rupak Chatterjee & Zhenyu Cui & Jiacheng Fan & Mingzhe Liu, 2018. "An efficient and stable method for short maturity Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(12), pages 1470-1486, December.
    12. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    13. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    14. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    15. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    16. Lin, Zhongguo & Han, Liyan & Li, Wei, 2021. "Option replication with transaction cost under Knightian uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    17. Chueh-Yung Tsao & Chao-Ching Liu, 2012. "Asian Options with Credit Risks: Pricing and Sensitivity Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(S3), pages 96-115, September.
    18. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    19. R. Vilela Mendes, 2022. "The fractional volatility model and rough volatility," Papers 2206.02205, arXiv.org.
    20. Zhenyu Cui & Chihoon Lee & Yanchu Liu, 2016. "On "A General Framework for Pricing Asian Options Under Markov Processes"," Papers 1601.05306, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:402-418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.