IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.19751.html
   My bibliography  Save this paper

Fitting the seven-parameter Generalized Tempered Stable distribution to the financial data

Author

Listed:
  • Aubain Nzokem
  • Daniel Maposa

Abstract

The paper proposes and implements a methodology to fit a seven-parameter Generalized Tempered Stable (GTS) distribution to financial data. The nonexistence of the mathematical expression of the GTS probability density function makes the maximum likelihood estimation (MLE) inadequate for providing parameter estimations. Based on the function characteristic and the fractional Fourier transform (FRFT), we provide a comprehensive approach to circumvent the problem and yield a good parameter estimation of the GTS probability. The methodology was applied to fit two heavily tailed data (Bitcoin and Ethereum returns) and two peaked data (S\&P 500 and SPY ETF returns). For each index, the estimation results show that the six-parameter estimations are statistically significant except for the local parameter, $\mu$. The goodness-of-fit was assessed through Kolmogorov-Smirnov, Anderson-Darling, and Pearson's chi-squared statistics. While the two-parameter geometric Brownian motion (GBM) hypothesis is always rejected, the GTS distribution fits significantly with a very high p-value; and outperforms the Kobol, Carr-Geman-Madan-Yor, and Bilateral Gamma distributions.

Suggested Citation

  • Aubain Nzokem & Daniel Maposa, 2024. "Fitting the seven-parameter Generalized Tempered Stable distribution to the financial data," Papers 2410.19751, arXiv.org, revised Jan 2025.
  • Handle: RePEc:arx:papers:2410.19751
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.19751
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. H. Nzokem, 2022. "Pricing European Options under Stochastic Volatility Models: Case of five-Parameter Variance-Gamma Process," Papers 2201.03378, arXiv.org, revised Jan 2023.
    2. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    3. Maashele Kholofelo Metwane & Daniel Maposa, 2023. "Extreme Value Theory Modelling of the Behaviour of Johannesburg Stock Exchange Financial Market Data," IJFS, MDPI, vol. 11(4), pages 1-27, November.
    4. Aubain Hilaire Nzokem, 2023. "Pricing European Options under Stochastic Volatility Models: Case of Five-Parameter Variance-Gamma Process," JRFM, MDPI, vol. 16(1), pages 1-28, January.
    5. A. H. Nzokem & V. T. Montshiwa, 2022. "Fitting Generalized Tempered Stable distribution: Fractional Fourier Transform (FRFT) Approach," Papers 2205.00586, arXiv.org, revised Jun 2022.
    6. A. H. Nzokem, 2023. "European Option Pricing Under Generalized Tempered Stable Process: Empirical Analysis," Papers 2304.06060, arXiv.org, revised Aug 2023.
    7. Marsaglia, George & Tsang, Wai Wan & Wang, Jingbo, 2003. "Evaluating Kolmogorov's Distribution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 8(i18).
    8. Marsaglia, George & Marsaglia, John, 2004. "Evaluating the Anderson-Darling Distribution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i02).
    9. Michael Grabchak & Gennady Samorodnitsky, 2010. "Do financial returns have finite or infinite variance? A paradox and an explanation," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 883-893.
    10. repec:dau:papers:123456789/1392 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. H. Nzokem, 2023. "Bitcoin versus S&P 500 Index: Return and Risk Analysis," Papers 2310.02436, arXiv.org.
    2. Aubain Nzokem & Daniel Maposa, 2024. "Fitting the Seven-Parameter Generalized Tempered Stable Distribution to Financial Data," JRFM, MDPI, vol. 17(12), pages 1-29, November.
    3. A. H. Nzokem, 2023. "European Option Pricing Under Generalized Tempered Stable Process: Empirical Analysis," Papers 2304.06060, arXiv.org, revised Aug 2023.
    4. Fernández de Marcos Giménez de los Galanes, Alberto, 2022. "Data-driven stabilizations of goodness-of-fit tests," DES - Working Papers. Statistics and Econometrics. WS 35324, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Fernández-de-Marcos, Alberto & García-Portugués, Eduardo, 2023. "Data-driven stabilizations of goodness-of-fit tests," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    6. Kim, Young Shin & Lee, Jaesung & Mittnik, Stefan & Park, Jiho, 2015. "Quanto option pricing in the presence of fat tails and asymmetric dependence," Journal of Econometrics, Elsevier, vol. 187(2), pages 512-520.
    7. Hasan A. Fallahgoul & Young S. Kim & Frank J. Fabozzi & Jiho Park, 2019. "Quanto Option Pricing with Lévy Models," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1279-1308, March.
    8. BenSaïda, Ahmed & Slim, Skander, 2016. "Highly flexible distributions to fit multiple frequency financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 203-213.
    9. Michael Grabchak, 2015. "Inversions of Lévy Measures and the Relation Between Long and Short Time Behavior of Lévy Processes," Journal of Theoretical Probability, Springer, vol. 28(1), pages 184-197, March.
    10. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    11. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    12. Aleksandar Mijatovi'c & Martijn Pistorius, 2009. "Exotic derivatives under stochastic volatility models with jumps," Papers 0912.2595, arXiv.org, revised Oct 2010.
    13. Fu, Qi & So, Jacky Yuk-Chow & Li, Xiaotong, 2024. "Stable paretian distribution, return generating processes and habit formation—The implication for equity premium puzzle," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    14. Sloot Henrik, 2022. "Implementing Markovian models for extendible Marshall–Olkin distributions," Dependence Modeling, De Gruyter, vol. 10(1), pages 308-343, January.
    15. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    16. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    17. Panov, Vladimir, 2019. "Some properties of the one-dimensional subordinated stable model," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 80-84.
    18. Tatjana Miljkovic & Saleem Shaik & Dragan Miljkovic, 2017. "Redefining standards for body mass index of the US population based on BRFSS data using mixtures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(2), pages 197-211, January.
    19. Igor Halperin & Andrey Itkin, 2013. "USLV: Unspanned Stochastic Local Volatility Model," Papers 1301.4442, arXiv.org, revised Mar 2013.
    20. Shaw, Charles, 2018. "Regime-Switching And Levy Jump Dynamics In Option-Adjusted Spreads," MPRA Paper 94154, University Library of Munich, Germany, revised 27 May 2019.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.19751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.