IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp1202.html
   My bibliography  Save this paper

Quantifying Reflexivity in Financial Markets: Towards a Prediction of Flash Crashes

Author

Listed:
  • Vladimir Filimonov

    (ETH Zürich)

  • Didier Sornette

    (Swiss Finance Institute and ETH Zürich)

Abstract

We introduce a new measure of activity of financial markets that provides a direct access to their level of endogeneity. This measure quantifies how much of price changes are due to endogenous feedback processes, as opposed to exogenous news. For this, we calibrate the self-excited conditional Poisson Hawkes model, which combines in a natural and parsimonious way exogenous influences with self-excited dynamics, to the E-mini S&P 500 futures contracts traded in the Chicago Mercantile Exchange from 1998 to 2010. We find that the level of endogeneity has increased significantly from 1998 to 2010, with only 70% in 1998 to less than 30% since 2007 of the price changes resulting from some revealed exogenous information. Analogous to nuclear plant safety concerned with avoiding “criticality”, our measure provides a direct quantification of the distance of the financial market to a critical state defined precisely as the limit of diverging trading activity in absence of any external driving.

Suggested Citation

  • Vladimir Filimonov & Didier Sornette, 2012. "Quantifying Reflexivity in Financial Markets: Towards a Prediction of Flash Crashes," Swiss Finance Institute Research Paper Series 12-02, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp1202
    as

    Download full text from publisher

    File URL: http://ssrn.com/abstract=1998832
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    complex systems; econophysics; exogenous- versus endogenous; high-frequency trading; criticality; trading activity; volume;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G01 - Financial Economics - - General - - - Financial Crises
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp1202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.