IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2303.02613.html
   My bibliography  Save this paper

On Data-Driven Drawdown Control with Restart Mechanism in Trading

Author

Listed:
  • Chung-Han Hsieh

Abstract

This paper extends the existing drawdown modulation control policy to include a novel restart mechanism for trading. It is known that the drawdown modulation policy guarantees the maximum percentage drawdown no larger than a prespecified drawdown limit for all time with probability one. However, when the prespecified limit is approaching in practice, such a modulation policy becomes a stop-loss order, which may miss the profitable follow-up opportunities if any. Motivated by this, we add a data-driven restart mechanism into the drawdown modulation trading system to auto-tune the performance. We find that with the restart mechanism, our policy may achieve a superior trading performance to that without the restart, even with a nonzero transaction costs setting. To support our findings, some empirical studies using equity ETF and cryptocurrency with historical price data are provided.

Suggested Citation

  • Chung-Han Hsieh, 2023. "On Data-Driven Drawdown Control with Restart Mechanism in Trading," Papers 2303.02613, arXiv.org.
  • Handle: RePEc:arx:papers:2303.02613
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2303.02613
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    2. Jaksa Cvitanic & Fernando Zapatero, 2004. "Introduction to the Economics and Mathematics of Financial Markets," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262532654, April.
    3. Leonard Maclean & Edward Thorp & William Ziemba, 2010. "Long-term capital growth: the good and bad properties of the Kelly and fractional Kelly capital growth criteria," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 681-687.
    4. Chung-Han Hsieh, 2022. "On Robustness of Double Linear Trading with Transaction Costs," Papers 2209.12383, arXiv.org.
    5. Sanford J. Grossman & Zhongquan Zhou, 1993. "Optimal Investment Strategies For Controlling Drawdowns," Mathematical Finance, Wiley Blackwell, vol. 3(3), pages 241-276, July.
    6. Pei-Ting Wang & Chung-Han Hsieh, 2022. "On Data-Driven Log-Optimal Portfolio: A Sliding Window Approach," Papers 2206.12148, arXiv.org.
    7. Stephen Boyd & Enzo Busseti & Steven Diamond & Ronald N. Kahn & Kwangmoo Koh & Peter Nystrup & Jan Speth, 2017. "Multi-Period Trading via Convex Optimization," Papers 1705.00109, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung-Han Hsieh & B. Ross Barmish, 2017. "On Drawdown-Modulated Feedback Control in Stock Trading," Papers 1710.01503, arXiv.org.
    2. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    3. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, December.
    4. Alexander, Gordon J. & Baptista, Alexandre M., 2006. "Portfolio selection with a drawdown constraint," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3171-3189, November.
    5. Arjan Berkelaar & Roy Kouwenberg, 2011. "A Liability-Relative Drawdown Approach to Pension Asset Liability Management," Palgrave Macmillan Books, in: Gautam Mitra & Katharina Schwaiger (ed.), Asset and Liability Management Handbook, chapter 14, pages 352-382, Palgrave Macmillan.
    6. Drenovak, Mikica & Ranković, Vladimir & Urošević, Branko & Jelic, Ranko, 2022. "Mean-Maximum Drawdown Optimization of Buy-and-Hold Portfolios Using a Multi-objective Evolutionary Algorithm," Finance Research Letters, Elsevier, vol. 46(PA).
    7. Vladimir Cherny & Jan Obłój, 2013. "Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model," Finance and Stochastics, Springer, vol. 17(4), pages 771-800, October.
    8. David Landriault & Bin Li & Hongzhong Zhang, 2014. "On the Frequency of Drawdowns for Brownian Motion Processes," Papers 1403.1183, arXiv.org.
    9. Tommaso Proietti, 2024. "Ups and (Draw)Downs," CEIS Research Paper 576, Tor Vergata University, CEIS, revised 03 May 2024.
    10. Hongzhong Zhang & Olympia Hadjiliadis, 2012. "Drawdowns and the Speed of Market Crash," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 739-752, September.
    11. Zhang, Hongzhong & Leung, Tim & Hadjiliadis, Olympia, 2013. "Stochastic modeling and fair valuation of drawdown insurance," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 840-850.
    12. Chung-Han Hsieh & B. Ross Barmish, 2017. "On Inefficiency of Markowitz-Style Investment Strategies When Drawdown is Important," Papers 1710.01501, arXiv.org, revised Aug 2018.
    13. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.
    14. Ankush Agarwal & Ronnie Sircar, 2017. "Portfolio Benchmarking under Drawdown Constraint and Stochastic Sharpe Ratio," Working Papers hal-01388399, HAL.
    15. Kyo Yamamoto & Seisho Sato & Akihiko Takahashi, 2009. "Probability Distribution and Option Pricing for Drawdown in a Stochastic Volatility Environment," CIRJE F-Series CIRJE-F-625, CIRJE, Faculty of Economics, University of Tokyo.
    16. Zabarankin, Michael & Pavlikov, Konstantin & Uryasev, Stan, 2014. "Capital Asset Pricing Model (CAPM) with drawdown measure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 508-517.
    17. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Papers 2006.00282, arXiv.org.
    18. Damiano Rossello & Silvestro Lo Cascio, 2021. "A refined measure of conditional maximum drawdown," Risk Management, Palgrave Macmillan, vol. 23(4), pages 301-321, December.
    19. Zhang, Gongqiu & Li, Lingfei, 2023. "A general method for analysis and valuation of drawdown risk," Journal of Economic Dynamics and Control, Elsevier, vol. 152(C).
    20. Leonie Violetta Brinker, 2021. "Minimal Expected Time in Drawdown through Investment for an Insurance Diffusion Model," Risks, MDPI, vol. 9(1), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2303.02613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.