IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.05170.html
   My bibliography  Save this paper

GPU acceleration of the Seven-League Scheme for large time step simulations of stochastic differential equations

Author

Listed:
  • Shuaiqiang Liu
  • Graziana Colonna
  • Lech A. Grzelak
  • Cornelis W. Oosterlee

Abstract

Monte Carlo simulation is widely used to numerically solve stochastic differential equations. Although the method is flexible and easy to implement, it may be slow to converge. Moreover, an inaccurate solution will result when using large time steps. The Seven League scheme, a deep learning-based numerical method, has been proposed to address these issues. This paper generalizes the scheme regarding parallel computing, particularly on Graphics Processing Units (GPUs), improving the computational speed.

Suggested Citation

  • Shuaiqiang Liu & Graziana Colonna & Lech A. Grzelak & Cornelis W. Oosterlee, 2023. "GPU acceleration of the Seven-League Scheme for large time step simulations of stochastic differential equations," Papers 2302.05170, arXiv.org.
  • Handle: RePEc:arx:papers:2302.05170
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.05170
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. A. Grzelak & J. A. S. Witteveen & M. Suárez-Taboada & C. W. Oosterlee, 2019. "The stochastic collocation Monte Carlo sampler: highly efficient sampling from ‘expensive’ distributions," Quantitative Finance, Taylor & Francis Journals, vol. 19(2), pages 339-356, February.
    2. Eckhard Platen, 1999. "An Introduction to Numerical Methods for Stochastic Differential Equations," Research Paper Series 6, Quantitative Finance Research Centre, University of Technology, Sydney.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuaiqiang Liu & Lech A. Grzelak & Cornelis W. Oosterlee, 2022. "The Seven-League Scheme: Deep Learning for Large Time Step Monte Carlo Simulations of Stochastic Differential Equations," Risks, MDPI, vol. 10(3), pages 1-27, February.
    2. Mikulevicius, Remigijus & Zhang, Changyong, 2011. "On the rate of convergence of weak Euler approximation for nondegenerate SDEs driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1720-1748, August.
    3. I. Lubashevsky & M. Hajimahmoodzadeh & A. Katsnelson & P. Wagner, 2003. "Noised-induced phase transition in an oscillatory system with dynamical traps," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 36(1), pages 115-118, November.
    4. Ding-Geng Chen & Haipeng Gao & Chuanshu Ji, 2021. "Bayesian Inference for Stochastic Cusp Catastrophe Model with Partially Observed Data," Mathematics, MDPI, vol. 9(24), pages 1-9, December.
    5. George Hong, 2020. "Skewing Quanto with Simplicity," Papers 2009.02566, arXiv.org.
    6. Küchler, Uwe & Platen, Eckhard, 2002. "Weak discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(6), pages 497-507.
    7. I. A. Lubashevsky & R. Mahnke & M. Hajimahmoodzadeh & A. Katsnelson, 2005. "Long-lived states of oscillator chains with dynamical traps," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 44(1), pages 63-70, March.
    8. Konakov Valentin & Mammen Enno, 2002. "Edgeworth type expansions for Euler schemes for stochastic differential equations," Monte Carlo Methods and Applications, De Gruyter, vol. 8(3), pages 271-286, December.
    9. Gao, Jianfang & Liang, Hui & Ma, Shufang, 2019. "Strong convergence of the semi-implicit Euler method for nonlinear stochastic Volterra integral equations with constant delay," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 385-398.
    10. K. B. Gubbels & J. Y. Ypma & C. W. Oosterlee, 2023. "Principal Component Copulas for Capital Modelling and Systemic Risk," Papers 2312.13195, arXiv.org, revised Dec 2024.
    11. Grzelak, Lech A., 2022. "Sparse grid method for highly efficient computation of exposures for xVA," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    12. Kawar Badie Mahmood & Adil Sufian Husain, 2021. "Bernoulli’s Number One Solution for Stochastic Equilibrium," International Journal of Science and Business, IJSAB International, vol. 5(8), pages 194-201.
    13. Nicola F. Zaugg & Leonardo Perotti & Lech A. Grzelak, 2024. "Volatility Parametrizations with Random Coefficients: Analytic Flexibility for Implied Volatility Surfaces," Papers 2411.04041, arXiv.org, revised Nov 2024.
    14. Küchler, Uwe & Platen, Eckhard, 2000. "Strong discrete time approximation of stochastic differential equations with time delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 189-205.
    15. Wei Zhang & Hui Min, 2021. "Weak Convergence Analysis and Improved Error Estimates for Decoupled Forward-Backward Stochastic Differential Equations," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    16. Leonardo Perotti & Lech A. Grzelak, 2021. "Fast Sampling from Time-Integrated Bridges using Deep Learning," Papers 2111.13901, arXiv.org.
    17. Bruti-Liberati Nicola & Nikitopoulos-Sklibosios Christina & Platen Eckhard, 2006. "First Order Strong Approximations of Jump Diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 12(3), pages 191-209, October.
    18. Ganguly, Arnab & Sundar, P., 2021. "Inhomogeneous functionals and approximations of invariant distributions of ergodic diffusions: Central limit theorem and moderate deviation asymptotics," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 74-110.
    19. Gao, Jiti, 2002. "Modeling long-range dependent Gaussian processes with application in continuous-time financial models," MPRA Paper 11973, University Library of Munich, Germany, revised 18 Sep 2003.
    20. Kubilius Kestutis & Platen Eckhard, 2002. "Rate of Weak Convergence of the Euler Approximation for Diffusion Processes with Jumps," Monte Carlo Methods and Applications, De Gruyter, vol. 8(1), pages 83-96, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.05170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.