IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i8p848-d535152.html
   My bibliography  Save this article

Weak Convergence Analysis and Improved Error Estimates for Decoupled Forward-Backward Stochastic Differential Equations

Author

Listed:
  • Wei Zhang

    (Faculty of Science, College of Statistics and Data Science, Beijing University of Technology, Beijing 100124, China)

  • Hui Min

    (Faculty of Science, College of Statistics and Data Science, Beijing University of Technology, Beijing 100124, China)

Abstract

In this paper, we mainly investigate the weak convergence analysis about the error terms which are determined by the discretization for solving the stochastic differential equation (SDE, for short) in forward-backward stochastic differential equations (FBSDEs, for short), which is on the basis of Itô Taylor expansion, the numerical SDE theory, and numerical FBSDEs theory. Under the weak convergence analysis of FBSDEs, we further establish better error estimates of recent numerical schemes for solving FBSDEs.

Suggested Citation

  • Wei Zhang & Hui Min, 2021. "Weak Convergence Analysis and Improved Error Estimates for Decoupled Forward-Backward Stochastic Differential Equations," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:848-:d:535152
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/8/848/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/8/848/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eckhard Platen, 1999. "An Introduction to Numerical Methods for Stochastic Differential Equations," Research Paper Series 6, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Bouchard, Bruno & Touzi, Nizar, 2004. "Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 111(2), pages 175-206, June.
    3. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    4. Bouchard, Bruno & Elie, Romuald, 2008. "Discrete-time approximation of decoupled Forward-Backward SDE with jumps," Stochastic Processes and their Applications, Elsevier, vol. 118(1), pages 53-75, January.
    5. Bender, Christian & Denk, Robert, 2007. "A forward scheme for backward SDEs," Stochastic Processes and their Applications, Elsevier, vol. 117(12), pages 1793-1812, December.
    6. Gobet, Emmanuel & Labart, Céline, 2007. "Error expansion for the discretization of backward stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 803-829, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guangbao Guo, 2018. "Finite Difference Methods for the BSDEs in Finance," IJFS, MDPI, vol. 6(1), pages 1-15, March.
    2. Fujii, Masaaki & Takahashi, Akihiko, 2019. "Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions," Stochastic Processes and their Applications, Elsevier, vol. 129(5), pages 1492-1532.
    3. Antonis Papapantoleon & Dylan Possamai & Alexandros Saplaouras, 2021. "Stability of backward stochastic differential equations: the general case," Papers 2107.11048, arXiv.org, revised Apr 2023.
    4. Masaaki Fujii & Akihiko Takahashi, 2015. "Asymptotic Expansion for Forward-Backward SDEs with Jumps," Papers 1510.03220, arXiv.org, revised Sep 2018.
    5. Ioannis Exarchos & Evangelos Theodorou & Panagiotis Tsiotras, 2019. "Stochastic Differential Games: A Sampling Approach via FBSDEs," Dynamic Games and Applications, Springer, vol. 9(2), pages 486-505, June.
    6. Dirk Becherer & Plamen Turkedjiev, 2014. "Multilevel approximation of backward stochastic differential equations," Papers 1412.3140, arXiv.org.
    7. Masaaki Fujii & Akihiko Takahashi, 2016. "Solving Backward Stochastic Differential Equations with quadratic-growth drivers by Connecting the Short-term Expansions," Papers 1606.04285, arXiv.org, revised May 2018.
    8. Samuel N. Cohen & Martin Tegn'er, 2018. "European Option Pricing with Stochastic Volatility models under Parameter Uncertainty," Papers 1807.03882, arXiv.org.
    9. Pagès, Gilles & Sagna, Abass, 2018. "Improved error bounds for quantization based numerical schemes for BSDE and nonlinear filtering," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 847-883.
    10. Crisan, D. & Manolarakis, K. & Touzi, N., 2010. "On the Monte Carlo simulation of BSDEs: An improvement on the Malliavin weights," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1133-1158, July.
    11. Masaaki Fujii & Akihiko Takahashi, 2015. "Perturbative Expansion Technique for Non-linear FBSDEs with Interacting Particle Method," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(3), pages 283-304, September.
    12. Giorgia Callegaro & Alessandro Gnoatto & Martino Grasselli, 2021. "A Fully Quantization-based Scheme for FBSDEs," Working Papers 07/2021, University of Verona, Department of Economics.
    13. Christian Bender & Nikolaus Schweizer & Jia Zhuo, 2013. "A primal-dual algorithm for BSDEs," Papers 1310.3694, arXiv.org, revised Sep 2014.
    14. Polynice Oyono Ngou & Cody Hyndman, 2014. "A Fourier interpolation method for numerical solution of FBSDEs: Global convergence, stability, and higher order discretizations," Papers 1410.8595, arXiv.org, revised May 2022.
    15. Qiang Han & Shaolin Ji, 2022. "A Multi-Step Algorithm for BSDEs Based On a Predictor-Corrector Scheme and Least-Squares Monte Carlo," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2403-2426, December.
    16. Masaaki Fujii & Akihiko Takahashi, 2016. "Solving Backward Stochastic Differential Equations by Connecting the Short-term Expansions(Revised version of CARF-F-387)," CARF F-Series CARF-F-398, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    17. Monique Jeanblanc & Thibaut Mastrolia & Dylan Possamaï & Anthony Réveillac, 2015. "Utility Maximization With Random Horizon: A Bsde Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1-43, November.
    18. Masaaki Fujii & Akihiko Takahashi, 2018. "Asymptotic Expansion for Forward-Backward SDEs with JumpsAsymptotic Expansion for Forward-Backward SDEs with Jumps (Forthcoming in Stochastics) (Revised version of F-372)," CARF F-Series CARF-F-445, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    19. Masaaki Fujii & Akihiko Takahashi, 2016. "Solving Backward Stochastic Differential Equations by Connecting the Short-term Expansions," CIRJE F-Series CIRJE-F-1016, CIRJE, Faculty of Economics, University of Tokyo.
    20. Chol-Kyu Pak & Mun-Chol Kim & Chang-Ho Rim, 2018. "Adapted $\theta$-Scheme and Its Error Estimates for Backward Stochastic Differential Equations," Papers 1808.02173, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:8:p:848-:d:535152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.