IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.04041.html
   My bibliography  Save this paper

Volatility Parametrizations with Random Coefficients: Analytic Flexibility for Implied Volatility Surfaces

Author

Listed:
  • Nicola F. Zaugg
  • Leonardo Perotti
  • Lech A. Grzelak

Abstract

It is a market practice to express market-implied volatilities in some parametric form. The most popular parametrizations are based on or inspired by an underlying stochastic model, like the Heston model (SVI method) or the SABR model (SABR parametrization). Their popularity is often driven by a closed-form representation enabling efficient calibration. However, these representations indirectly impose a model-specific volatility structure on observable market quotes. When the market's volatility does not follow the parametric model regime, the calibration procedure will fail or lead to extreme parameters, indicating inconsistency. This article addresses this critical limitation - we propose an arbitrage-free framework for letting the parameters from the parametric implied volatility formula be random. The method enhances the existing parametrizations and enables a significant widening of the spectrum of permissible shapes of implied volatilities while preserving analyticity and, therefore, computation efficiency. We demonstrate the effectiveness of the novel method on real data from short-term index and equity options, where the standard parametrizations fail to capture market dynamics. Our results show that the proposed method is particularly powerful in modeling the implied volatility curves of short expiry options preceding an earnings announcement, when the risk-neutral probability density function exhibits a bimodal form.

Suggested Citation

  • Nicola F. Zaugg & Leonardo Perotti & Lech A. Grzelak, 2024. "Volatility Parametrizations with Random Coefficients: Analytic Flexibility for Implied Volatility Surfaces," Papers 2411.04041, arXiv.org, revised Nov 2024.
  • Handle: RePEc:arx:papers:2411.04041
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.04041
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    2. Paul Glasserman & Dan Pirjol, 2023. "W-shaped implied volatility curves and the Gaussian mixture model," Quantitative Finance, Taylor & Francis Journals, vol. 23(4), pages 557-577, April.
    3. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    4. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    5. Damiano Brigo & Fabio Mercurio, 2002. "Lognormal-Mixture Dynamics And Calibration To Market Volatility Smiles," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 427-446.
    6. L. A. Grzelak & J. A. S. Witteveen & M. Suárez-Taboada & C. W. Oosterlee, 2019. "The stochastic collocation Monte Carlo sampler: highly efficient sampling from ‘expensive’ distributions," Quantitative Finance, Taylor & Francis Journals, vol. 19(2), pages 339-356, February.
    7. Arianna Mingone, 2022. "No arbitrage global parametrization for the eSSVI volatility surface," Papers 2204.00312, arXiv.org.
    8. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
    9. Gaoyue Guo & Antoine Jacquier & Claude Martini & Leo Neufcourt, 2012. "Generalised arbitrage-free SVI volatility surfaces," Papers 1210.7111, arXiv.org, revised May 2016.
    10. A. Mingone, 2022. "No arbitrage global parametrization for the eSSVI volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 22(12), pages 2205-2217, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    2. Lukas Gonon & Antoine Jacquier & Ruben Wiedemann, 2024. "Operator Deep Smoothing for Implied Volatility," Papers 2406.11520, arXiv.org, revised Oct 2024.
    3. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    4. Emmanuel Gnabeyeu & Omar Karkar & Imad Idboufous, 2024. "Solving The Dynamic Volatility Fitting Problem: A Deep Reinforcement Learning Approach," Papers 2410.11789, arXiv.org.
    5. Shuzhen Yang & Wenqing Zhang, 2023. "Fixed-point iterative algorithm for SVI model," Papers 2301.07830, arXiv.org.
    6. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2020. "Detecting and repairing arbitrage in traded option prices," Papers 2008.09454, arXiv.org.
    7. Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2021. "Arbitrage-free neural-SDE market models," Papers 2105.11053, arXiv.org, revised Aug 2021.
    8. Hirbod Assa & Mostafa Pouralizadeh & Abdolrahim Badamchizadeh, 2019. "Sound Deposit Insurance Pricing Using a Machine Learning Approach," Risks, MDPI, vol. 7(2), pages 1-18, April.
    9. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).
    10. Damiano Brigo, 2008. "The general mixture-diffusion SDE and its relationship with an uncertain-volatility option model with volatility-asset decorrelation," Papers 0812.4052, arXiv.org.
    11. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    12. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    13. Detering, Nils & Packham, Natalie, 2018. "Model risk of contingent claims," IRTG 1792 Discussion Papers 2018-036, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    14. Dillschneider, Yannick & Maurer, Raimond, 2019. "Functional Ross recovery: Theoretical results and empirical tests," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    15. Mnacho Echenim & Emmanuel Gobet & Anne-Claire Maurice, 2022. "Unbiasing and robustifying implied volatility calibration in a cryptocurrency market with large bid-ask spreads and missing quotes," Papers 2207.02989, arXiv.org.
    16. Xin Liu, 2016. "Asset Pricing with Random Volatility," Papers 1610.01450, arXiv.org, revised Sep 2018.
    17. Iain J. Clark & Saeed Amen, 2017. "Implied Distributions from GBPUSD Risk-Reversals and Implication for Brexit Scenarios," Risks, MDPI, vol. 5(3), pages 1-17, July.
    18. Salazar Celis, Oliver & Liang, Lingzhi & Lemmens, Damiaan & Tempère, Jacques & Cuyt, Annie, 2015. "Determining and benchmarking risk neutral distributions implied from option prices," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 372-387.
    19. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2024. "A Semi-Closed Form Approximation of Arbitrage-Free Call Option Price Surface," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1431-1457, April.
    20. Wenyong Zhang & Lingfei Li & Gongqiu Zhang, 2021. "A Two-Step Framework for Arbitrage-Free Prediction of the Implied Volatility Surface," Papers 2106.07177, arXiv.org, revised Jan 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.04041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.