IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2301.13009.html
   My bibliography  Save this paper

DeFi: data-driven characterisation of Uniswap v3 ecosystem & an ideal crypto law for liquidity pools

Author

Listed:
  • Deborah Miori
  • Mihai Cucuringu

Abstract

Uniswap is a Constant Product Market Maker built around liquidity pools, where pairs of tokens are exchanged subject to a fee that is proportional to the size of transactions. At the time of writing, there exist more than 6,000 pools associated with Uniswap v3, implying that empirical investigations on the full ecosystem can easily become computationally expensive. Thus, we propose a systematic workflow to extract and analyse a meaningful but computationally tractable sub-universe of liquidity pools. Leveraging on the 34 pools found relevant for the six-months time window January-June 2022, we then investigate the related liquidity consumption behaviour of market participants. We propose to represent each liquidity taker by a suitably constructed transaction graph, which is a fully connected network where nodes are the liquidity taker's executed transactions, and edges contain weights encoding the time elapsed between any two transactions. We extend the NLP-inspired graph2vec algorithm to the weighted undirected setting, and employ it to obtain an embedding of the set of graphs. This embedding allows us to extract seven clusters of liquidity takers, with equivalent behavioural patters and interpretable trading preferences. We conclude our work by testing for relationships between the characteristic mechanisms of each pool, i.e. liquidity provision, consumption, and price variation. We introduce a related ideal crypto law, inspired from the ideal gas law of thermodynamics, and demonstrate that pools adhering to this law are healthier trading venues in terms of sensitivity of liquidity and agents' activity. Regulators and practitioners could benefit from our model by developing related pool health monitoring tools.

Suggested Citation

  • Deborah Miori & Mihai Cucuringu, 2022. "DeFi: data-driven characterisation of Uniswap v3 ecosystem & an ideal crypto law for liquidity pools," Papers 2301.13009, arXiv.org, revised Jan 2023.
  • Handle: RePEc:arx:papers:2301.13009
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2301.13009
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robin Fritsch & Samuel Kaser & Roger Wattenhofer, 2022. "The Economics of Automated Market Makers," Papers 2206.04634, arXiv.org.
    2. Hugo Inzirillo & Stanislas de Quenetain, 2022. "Managing Risk in DeFi Portfolios," Papers 2205.14699, arXiv.org, revised Sep 2022.
    3. Igor Makarov & Antoinette Schoar, 2022. "Cryptocurrencies and Decentralized Finance (DeFi)," NBER Working Papers 30006, National Bureau of Economic Research, Inc.
    4. Lioba Heimbach & Ye Wang & Roger Wattenhofer, 2021. "Behavior of Liquidity Providers in Decentralized Exchanges," Papers 2105.13822, arXiv.org, revised Oct 2021.
    5. Jan Arvid Berg & Robin Fritsch & Lioba Heimbach & Roger Wattenhofer, 2022. "An Empirical Study of Market Inefficiencies in Uniswap and SushiSwap," Papers 2203.07774, arXiv.org, revised May 2022.
    6. Lioba Heimbach & Eric Schertenleib & Roger Wattenhofer, 2022. "Risks and Returns of Uniswap V3 Liquidity Providers," Papers 2205.08904, arXiv.org, revised Sep 2022.
    7. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georg Menz & Moritz Vo{ss}, 2023. "Aggregation of financial markets," Papers 2309.04116, arXiv.org, revised Sep 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcello Monga, 2024. "Automated Market Making and Decentralized Finance," Papers 2407.16885, arXiv.org.
    2. Miriam Aparicio, 2021. "Resiliency and Cooperation or Regarding Social and Collective Competencies for University Achievement. An Analysis from a Systemic Perspective," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 8, ejser_v8_.
    3. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    4. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    5. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    6. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    7. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    8. Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.
    9. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    10. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    11. Patrick D. Shay & Stephen S. Farnsworth Mick, 2017. "Clustered and distinct: a taxonomy of local multihospital systems," Health Care Management Science, Springer, vol. 20(3), pages 303-315, September.
    12. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    13. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    14. Matthijs Warrens, 2010. "Inequalities Between Kappa and Kappa-Like Statistics for k×k Tables," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 176-185, March.
    15. Iulia-Monica Oehler-Șincai & Claudia Gabriela Baicu & Sorin-Nicolae Curcă, 2022. "Fragmentation and Concentration within the International Payments, System – Risks, Challenges, Opportunities," Global Economic Observer, "Nicolae Titulescu" University of Bucharest, Faculty of Economic Sciences;Institute for World Economy of the Romanian Academy, vol. 10(2), pages 35-45, December.
    16. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    17. Jerzy Korzeniewski, 2016. "New Method Of Variable Selection For Binary Data Cluster Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 295-304, June.
    18. Zhu, Xuwen & Melnykov, Volodymyr, 2018. "Manly transformation in finite mixture modeling," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 190-208.
    19. Amiri, Babak & Karimianghadim, Ramin, 2024. "A novel text clustering model based on topic modelling and social network analysis," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    20. Annetta Ho & Cosmin Cazan & Andrew Schrumm, 2024. "The Ecology of Automated Market Makers," Discussion Papers 2024-12, Bank of Canada.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2301.13009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.