Mod-Poisson approximation schemes: Applications to credit risk
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
- N. El Karoui & Y. Jiao, 2009. "Stein’s method and zero bias transformation for CDO tranche pricing," Finance and Stochastics, Springer, vol. 13(2), pages 151-180, April.
- Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
- Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
- Amir Dembo & Jean-Dominique Deuschel & Darrell Duffie, 2004.
"Large portfolio losses,"
Finance and Stochastics, Springer, vol. 8(1), pages 3-16, January.
- Amir Dembo & Jean-Deominique Deuschel & Darrell Duffie, 2002. "Large Portfolio Losses," NBER Working Papers 9177, National Bureau of Economic Research, Inc.
- Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Spiliopoulos, Konstantinos & Sowers, Richard B., 2011. "Recovery rates in investment-grade pools of credit assets: A large deviations analysis," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2861-2898.
- Ji, Liuyan & Tan, Ken Seng & Yang, Fan, 2021. "Tail dependence and heavy tailedness in extreme risks," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 282-293.
- Millossovich, Pietro & Tsanakas, Andreas & Wang, Ruodu, 2024. "A theory of multivariate stress testing," European Journal of Operational Research, Elsevier, vol. 318(3), pages 851-866.
- Giuseppe Genovese & Ashkan Nikeghbali & Nicola Serra & Gabriele Visentin, 2022. "Universal approximation of credit portfolio losses using Restricted Boltzmann Machines," Papers 2202.11060, arXiv.org, revised Apr 2023.
- Tang, Qihe & Tong, Zhiwei & Yang, Yang, 2021. "Large portfolio losses in a turbulent market," European Journal of Operational Research, Elsevier, vol. 292(2), pages 755-769.
- Patrick Gagliardini & Christian Gouriéroux, 2011.
"Approximate Derivative Pricing for Large Classes of Homogeneous Assets with Systematic Risk,"
Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 237-280, Spring.
- Patrick GAGLIARDINI & Christian GOURIEROUX, 2010. "Approximate Derivative Pricing for Large Classes of Homogeneous Assets with Systematic Risk," Working Papers 2010-07, Center for Research in Economics and Statistics.
- Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
- Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
- H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022.
"GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series,"
Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
- Hibiki Kaibuchi & Yoshinori Kawasaki & Gilles Stupfler, 2021. "GARCH-UGH: A bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Papers 2104.09879, arXiv.org.
- Borowska, Agnieszka & Hoogerheide, Lennart & Koopman, Siem Jan & van Dijk, Herman K., 2020.
"Partially censored posterior for robust and efficient risk evaluation,"
Journal of Econometrics, Elsevier, vol. 217(2), pages 335-355.
- Agnieszka Borowska & Lennart Hoogerheide & Siem Jan Koopman & Herman K. van Dijk, 2019. "Partially Censored Posterior for robust and efficient risk evaluation," Working Paper 2019/12, Norges Bank.
- Agnieszka Borowska & Lennart Hoogerheide & Siem Jan Koopman & Herman van Dijk, 2019. "Partially Censored Posterior for Robust and Efficient Risk Evaluation," Tinbergen Institute Discussion Papers 19-057/III, Tinbergen Institute.
- E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
- Dimitris Bertsimas & Agni Orfanoudaki, 2021. "Algorithmic Insurance," Papers 2106.00839, arXiv.org, revised Dec 2022.
- Tim J. Boonen & Wing Fung Chong & Mario Ghossoub, 2024. "Pareto‐efficient risk sharing in centralized insurance markets with application to flood risk," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 91(2), pages 449-488, June.
- Xuehai Zhang, 2019. "Value at Risk and Expected Shortfall under General Semi-parametric GARCH models," Working Papers CIE 123, Paderborn University, CIE Center for International Economics.
- Eisenberg, Larry, 2011. "Destabilizing properties of a VaR or probability-of-ruin constraint when variances may be infinite," Journal of Financial Stability, Elsevier, vol. 7(1), pages 10-18, January.
- Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
- Annalisa Molino & Carlo Sala, 2021. "Forecasting value at risk and conditional value at risk using option market data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1190-1213, November.
- Xuehai Zhang, 2019. "Value at Risk and Expected Shortfall under General Semi-parametric GARCH models," Working Papers CIE 126, Paderborn University, CIE Center for International Economics.
- Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
- Hirbod Assa & Liyuan Lin & Ruodu Wang, 2022. "Calibrating distribution models from PELVE," Papers 2204.08882, arXiv.org, revised Jun 2023.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2023-01-02 (Computational Economics)
- NEP-RMG-2023-01-02 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.04436. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.