IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v304y2021i1d10.1007_s10479-021-04075-3.html
   My bibliography  Save this article

A novel hybrid PSO-based metaheuristic for costly portfolio selection problems

Author

Listed:
  • Marco Corazza

    (Università Ca’ Foscari, Venezia)

  • Giacomo di Tollo

    (Università Ca’ Foscari, Venezia)

  • Giovanni Fasano

    (Ca’ Foscari University of Venice
    National Research Council – Maritime Technology Research Institute (CNR – INSEAN))

  • Raffaele Pesenti

    (Ca’ Foscari University of Venice)

Abstract

In this paper we propose a hybrid metaheuristic based on Particle Swarm Optimization, which we tailor on a portfolio selection problem. To motivate and apply our hybrid metaheuristic, we reformulate the portfolio selection problem as an unconstrained problem, by means of penalty functions in the framework of the exact penalty methods. Our metaheuristic is hybrid as it adaptively updates the penalty parameters of the unconstrained model during the optimization process. In addition, it iteratively refines its solutions to reduce possible infeasibilities. We report also a numerical case study. Our hybrid metaheuristic appears to perform better than the corresponding Particle Swarm Optimization solver with constant penalty parameters. It performs similarly to two corresponding Particle Swarm Optimization solvers with penalty parameters respectively determined by a REVAC-based tuning procedure and an irace-based one, but on average it just needs less than 4% of the computational time requested by the latter procedures.

Suggested Citation

  • Marco Corazza & Giacomo di Tollo & Giovanni Fasano & Raffaele Pesenti, 2021. "A novel hybrid PSO-based metaheuristic for costly portfolio selection problems," Annals of Operations Research, Springer, vol. 304(1), pages 109-137, September.
  • Handle: RePEc:spr:annopr:v:304:y:2021:i:1:d:10.1007_s10479-021-04075-3
    DOI: 10.1007/s10479-021-04075-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04075-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04075-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Corazza & Giovanni Fasano & Riccardo Gusso, 2011. "Particle Swarm Optimization with non-smooth penalty reformulation for a complex portfolio selection problem," Working Papers 2011_10, Department of Economics, University of Venice "Ca' Foscari".
    2. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    3. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    4. Marshall L. Fisher, 1985. "An Applications Oriented Guide to Lagrangian Relaxation," Interfaces, INFORMS, vol. 15(2), pages 10-21, April.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Chen, Wei & Zhang, Wei-Guo, 2010. "The admissible portfolio selection problem with transaction costs and an improved PSO algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2070-2076.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaydip Sen & Subhasis Dasgupta, 2023. "Portfolio Optimization: A Comparative Study," Papers 2307.05048, arXiv.org.
    2. Jaydip Sen & Abhishek Dutta, 2022. "Design and Analysis of Optimized Portfolios for Selected Sectors of the Indian Stock Market," Papers 2210.03943, arXiv.org.
    3. Massimiliano Kaucic & Filippo Piccotto & Gabriele Sbaiz, 2024. "A constrained swarm optimization algorithm for large-scale long-run investments using Sharpe ratio-based performance measures," Computational Management Science, Springer, vol. 21(1), pages 1-29, June.
    4. Jaydip Sen & Abhishek Dutta, 2022. "A Comparative Study of Hierarchical Risk Parity Portfolio and Eigen Portfolio on the NIFTY 50 Stocks," Papers 2210.00984, arXiv.org.
    5. Gianni Filograsso & Giacomo Tollo, 2023. "Adaptive evolutionary algorithms for portfolio selection problems," Computational Management Science, Springer, vol. 20(1), pages 1-38, December.
    6. Jaydip Sen & Sidra Mehtab & Abhishek Dutta & Saikat Mondal, 2022. "Hierarchical Risk Parity and Minimum Variance Portfolio Design on NIFTY 50 Stocks," Papers 2202.02728, arXiv.org.
    7. Jaydip Sen & Abhishek Dutta & Sidra Mehtab, 2021. "Stock Portfolio Optimization Using a Deep Learning LSTM Model," Papers 2111.04709, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    2. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    3. Fu, Tianwen & Zhuang, Xinkai & Hui, Yongchang & Liu, Jia, 2017. "Convex risk measures based on generalized lower deviation and their applications," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 27-37.
    4. Hu, Taizhong & Chen, Ouxiang, 2020. "On a family of coherent measures of variability," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 173-182.
    5. Zhiping Chen & Jia Liu & Gang Li & Zhe Yan, 2016. "Composite time-consistent multi-period risk measure and its application in optimal portfolio selection," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 515-540, October.
    6. Jun-ya Gotoh & Akiko Takeda & Rei Yamamoto, 2014. "Interaction between financial risk measures and machine learning methods," Computational Management Science, Springer, vol. 11(4), pages 365-402, October.
    7. Marco Corazza & Giacomo Di Tollo & Giovanni Fasano & Raffaele Pesenti, 2015. "A novel initialization of PSO for costly portfolio selection problems," Working Papers 4, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
    8. Zhiping Chen & Qianhui Hu & Ruiyue Lin, 2016. "Performance ratio-based coherent risk measure and its application," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 681-693, May.
    9. S. Geissel & H. Graf & J. Herbinger & F. T. Seifried, 2022. "Portfolio optimization with optimal expected utility risk measures," Annals of Operations Research, Springer, vol. 309(1), pages 59-77, February.
    10. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    11. Marco Corazza & Giovanni Fasano & Riccardo Gusso, 2011. "Particle Swarm Optimization with non-smooth penalty reformulation for a complex portfolio selection problem," Working Papers 2011_10, Department of Economics, University of Venice "Ca' Foscari".
    12. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    13. Gianni Filograsso & Giacomo Tollo, 2023. "Adaptive evolutionary algorithms for portfolio selection problems," Computational Management Science, Springer, vol. 20(1), pages 1-38, December.
    14. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel, 2010. "CAPM and APT-like models with risk measures," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1166-1174, June.
    15. H. Fink & S. Geissel & J. Herbinger & F. T. Seifried, 2019. "Portfolio Optimization with Optimal Expected Utility Risk Measures," Working Paper Series 2019-07, University of Trier, Research Group Quantitative Finance and Risk Analysis.
    16. Zhiping Chen & Qianhui Hu, 2018. "On Coherent Risk Measures Induced by Convex Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 673-698, June.
    17. Chen, Zhiping & Yang, Li, 2011. "Nonlinearly weighted convex risk measure and its application," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1777-1793, July.
    18. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel, 2016. "Good deals and benchmarks in robust portfolio selection," European Journal of Operational Research, Elsevier, vol. 250(2), pages 666-678.
    19. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    20. Winter, Peter, 2007. "Managerial Risk Accounting and Control – A German perspective," MPRA Paper 8185, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:304:y:2021:i:1:d:10.1007_s10479-021-04075-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.