IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.06902.html
   My bibliography  Save this paper

Transaction time models in multi-state life insurance

Author

Listed:
  • Kristian Buchardt
  • Christian Furrer
  • Oliver Lunding Sandqvist

Abstract

In life insurance contracts, benefits and premiums are typically paid contingent on the biometric state of the insured. Due to delays between the occurrence, reporting, and settlement of changes to the biometric state, the state process is not fully observable in real-time. This fact implies that the classic multi-state models for the biometric state of the insured are not able to describe the development of the policy in real-time, which encompasses handling of incurred-but-not-reported and reported-but-not-settled claims. We give a fundamental treatment of the problem in the setting of continuous-time multi-state life insurance by introducing a new class of models: transaction time models. The relation between the transaction time model and the classic model is studied and a result linking the present values in the two models is derived. The results and their practical implications are illustrated for disability coverages, where we obtain explicit expressions for the transaction time reserve in specific models.

Suggested Citation

  • Kristian Buchardt & Christian Furrer & Oliver Lunding Sandqvist, 2022. "Transaction time models in multi-state life insurance," Papers 2209.06902, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2209.06902
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.06902
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcus C. Christiansen, 2021. "Time-dynamic evaluations under non-monotone information generated by marked point processes," Finance and Stochastics, Springer, vol. 25(3), pages 563-596, July.
    2. Okine, A. Nii-Armah & Frees, Edward W. & Shi, Peng, 2022. "Joint Model Prediction And Application To Individual-Level Loss Reserving," ASTIN Bulletin, Cambridge University Press, vol. 52(1), pages 91-116, January.
    3. Haastrup, Svend & Arjas, Elja, 1996. "Claims Reserving in Continuous Time; A Nonparametric Bayesian Approach," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 139-164, November.
    4. Crevecoeur, Jonas & Robben, Jens & Antonio, Katrien, 2022. "A hierarchical reserving model for reported non-life insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 104(C), pages 158-184.
    5. Badescu, Andrei L. & Lin, X. Sheldon & Tang, Dameng, 2016. "A marked Cox model for the number of IBNR claims: Theory," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 29-37.
    6. Marcus C. Christiansen & Christian Furrer, 2020. "Dynamics of state-wise prospective reserves in the presence of non-monotone information," Papers 2003.02173, arXiv.org, revised Jan 2021.
    7. Christiansen, Marcus C. & Furrer, Christian, 2021. "Dynamics of state-wise prospective reserves in the presence of non-monotone information," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 81-98.
    8. Djehiche, Boualem & Löfdahl, Björn, 2016. "Nonlinear reserving in life insurance: Aggregation and mean-field approximation," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 1-13.
    9. Norberg, Ragnar, 1993. "Prediction of Outstanding Liabilities in Non-Life Insurance1," ASTIN Bulletin, Cambridge University Press, vol. 23(1), pages 95-115, May.
    10. Lopez, Olivier & Milhaud, Xavier & Thérond, Pierre-E., 2019. "A Tree-Based Algorithm Adapted To Microlevel Reserving And Long Development Claims," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 741-762, September.
    11. Marcus Christiansen, 2012. "Multistate models in health insurance," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 155-186, June.
    12. Badescu, Andrei L. & Chen, Tianle & Lin, X. Sheldon & Tang, Dameng, 2019. "A Marked Cox Model For The Number Of Ibnr Claims: Estimation And Application," ASTIN Bulletin, Cambridge University Press, vol. 49(3), pages 709-739, September.
    13. Norberg, Ragnar, 1999. "Prediction of Outstanding Liabilities II. Model Variations and Extensions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 5-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catalina Lozano-Murcia & Francisco P. Romero & Jesus Serrano-Guerrero & Arturo Peralta & Jose A. Olivas, 2024. "Potential Applications of Explainable Artificial Intelligence to Actuarial Problems," Mathematics, MDPI, vol. 12(5), pages 1-13, February.
    2. Oliver Lunding Sandqvist, 2023. "A multistate approach to disability insurance reserving with information delays," Papers 2312.14324, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Lunding Sandqvist, 2023. "A multistate approach to disability insurance reserving with information delays," Papers 2312.14324, arXiv.org.
    2. Maciak, Matúš & Okhrin, Ostap & Pešta, Michal, 2021. "Infinitely stochastic micro reserving," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 30-58.
    3. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    4. Benjamin Avanzi & Gregory Clive Taylor & Bernard Wong & Xinda Yang, 2020. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Papers 2004.11169, arXiv.org, revised Dec 2020.
    5. Richard J. Verrall & Mario V. Wüthrich, 2016. "Understanding Reporting Delay in General Insurance," Risks, MDPI, vol. 4(3), pages 1-36, July.
    6. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2019. "Infinitely Stochastic Micro Forecasting," Papers 1908.10636, arXiv.org, revised Sep 2019.
    7. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    8. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    9. Marie Michaelides & Mathieu Pigeon & H'el`ene Cossette, 2022. "Individual Claims Reserving using Activation Patterns," Papers 2208.08430, arXiv.org, revised Aug 2023.
    10. Crevecoeur, Jonas & Robben, Jens & Antonio, Katrien, 2022. "A hierarchical reserving model for reported non-life insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 104(C), pages 158-184.
    11. Mat'uv{s} Maciak & Ostap Okhrin & Michal Pev{s}ta, 2018. "Dynamic and granular loss reserving with copulae," Papers 1801.01792, arXiv.org.
    12. Stephan M. Bischofberger, 2020. "In-Sample Hazard Forecasting Based on Survival Models with Operational Time," Risks, MDPI, vol. 8(1), pages 1-17, January.
    13. Pigeon, Mathieu & Antonio, Katrien & Denuit, Michel, 2014. "Individual loss reserving using paid–incurred data," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 121-131.
    14. Avanzi, Benjamin & Wong, Bernard & Yang, Xinda, 2016. "A micro-level claim count model with overdispersion and reporting delays," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 1-14.
    15. Wahl, Felix, 2019. "Explicit moments for a class of micro-models in non-life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 140-156.
    16. Łukasz Delong & Mario V. Wüthrich, 2020. "Neural Networks for the Joint Development of Individual Payments and Claim Incurred," Risks, MDPI, vol. 8(2), pages 1-34, April.
    17. Avanzi, Benjamin & Taylor, Greg & Wang, Melantha & Wong, Bernard, 2021. "SynthETIC: An individual insurance claim simulator with feature control," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 296-308.
    18. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    19. Benjamin Avanzi & Gregory Clive Taylor & Melantha Wang & Bernard Wong, 2020. "SynthETIC: an individual insurance claim simulator with feature control," Papers 2008.05693, arXiv.org, revised Aug 2021.
    20. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.06902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.