IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.07254.html
   My bibliography  Save this paper

The Efficient Market Hypothesis for Bitcoin in the context of neural networks

Author

Listed:
  • Mike Kraehenbuehl
  • Joerg Osterrieder

Abstract

This study examines the weak form of the efficient market hypothesis for Bitcoin using a feedforward neural network. Due to the increasing popularity of cryptocurrencies in recent years, the question has arisen, as to whether market inefficiencies could be exploited in Bitcoin. Several studies we refer to here discuss this topic in the context of Bitcoin using either statistical tests or machine learning methods, mostly relying exclusively on data from Bitcoin itself. Results regarding market efficiency vary from study to study. In this study, however, the focus is on applying various asset-related input features in a neural network. The aim is to investigate whether the prediction accuracy improves when adding equity stock indices (S&P 500, Russell 2000), currencies (EURUSD), 10 Year US Treasury Note Yield as well as Gold&Silver producers index (XAU), in addition to using Bitcoin returns as input feature. As expected, the results show that more features lead to higher training performance from 54.6% prediction accuracy with one feature to 61% with six features. On the test set, we observe that with our neural network methodology, adding additional asset classes, no increase in prediction accuracy is achieved. One feature set is able to partially outperform a buy-and-hold strategy, but the performance drops again as soon as another feature is added. This leads us to the partial conclusion that weak market inefficiencies for Bitcoin cannot be detected using neural networks and the given asset classes as input. Therefore, based on this study, we find evidence that the Bitcoin market is efficient in the sense of the efficient market hypothesis during the sample period. We encourage further research in this area, as much depends on the sample period chosen, the input features, the model architecture, and the hyperparameters.

Suggested Citation

  • Mike Kraehenbuehl & Joerg Osterrieder, 2022. "The Efficient Market Hypothesis for Bitcoin in the context of neural networks," Papers 2208.07254, arXiv.org.
  • Handle: RePEc:arx:papers:2208.07254
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.07254
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Garcia & Claudio Juan Tessone & Pavlin Mavrodiev & Nicolas Perony, 2014. "The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy," Papers 1408.1494, arXiv.org.
    2. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    3. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    4. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    5. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    6. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    7. Stephen Chan & Jeffrey Chu & Saralees Nadarajah & Joerg Osterrieder, 2017. "A Statistical Analysis of Cryptocurrencies," JRFM, MDPI, vol. 10(2), pages 1-23, May.
    8. Joerg Osterrieder & Julian Lorenz, 2017. "A Statistical Risk Assessment Of Bitcoin And Its Extreme Tail Behavior," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-19, March.
    9. Sensoy, Ahmet, 2019. "The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies," Finance Research Letters, Elsevier, vol. 28(C), pages 68-73.
    10. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Yoon, Seong-Min, 2018. "Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets," Finance Research Letters, Elsevier, vol. 27(C), pages 228-234.
    11. Maravall, Agustin, 1983. "An Application of Nonlinear Time Series Forecasting," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(1), pages 66-74, January.
    12. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    13. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    14. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    15. Brauneis, Alexander & Mestel, Roland, 2018. "Price discovery of cryptocurrencies: Bitcoin and beyond," Economics Letters, Elsevier, vol. 165(C), pages 58-61.
    16. Khuntia, Sashikanta & Pattanayak, J.K., 2018. "Adaptive market hypothesis and evolving predictability of bitcoin," Economics Letters, Elsevier, vol. 167(C), pages 26-28.
    17. Burton G. Malkiel, 2005. "Reflections on the Efficient Market Hypothesis: 30 Years Later," The Financial Review, Eastern Finance Association, vol. 40(1), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    2. Nils Bundi & Marc Wildi, 2019. "Bitcoin and market-(in)efficiency: a systematic time series approach," Digital Finance, Springer, vol. 1(1), pages 47-65, November.
    3. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    4. Chu, Jeffrey & Zhang, Yuanyuan & Chan, Stephen, 2019. "The adaptive market hypothesis in the high frequency cryptocurrency market," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 221-231.
    5. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    6. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    7. Yi, Eojin & Ahn, Kwangwon & Choi, M.Y., 2022. "Cryptocurrency: Not far from equilibrium," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    8. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    9. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    10. Stefano Martinazzi & Daniele Regoli & Andrea Flori, 2020. "A Tale of Two Layers: The Mutual Relationship between Bitcoin and Lightning Network," Risks, MDPI, vol. 8(4), pages 1-18, December.
    11. Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
    12. Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
    13. Grobys, Klaus & Sapkota, Niranjan, 2019. "Cryptocurrencies and momentum," Economics Letters, Elsevier, vol. 180(C), pages 6-10.
    14. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
    15. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    16. Böyükaslan, Adem & Ecer, Fatih, 2021. "Determination of drivers for investing in cryptocurrencies through a fuzzy full consistency method-Bonferroni (FUCOM-F’B) framework," Technology in Society, Elsevier, vol. 67(C).
    17. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    18. Aslan, Aylin & Sensoy, Ahmet, 2020. "Intraday efficiency-frequency nexus in the cryptocurrency markets," Finance Research Letters, Elsevier, vol. 35(C).
    19. Sapkota, Niranjan & Grobys, Klaus, 2021. "Asset market equilibria in cryptocurrency markets: Evidence from a study of privacy and non-privacy coins," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    20. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.07254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.