Dynamic and Context-Dependent Stock Price Prediction Using Attention Modules and News Sentiment
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Sangyeon Kim & Myungjoo Kang, 2019. "Financial series prediction using Attention LSTM," Papers 1902.10877, arXiv.org.
- Mohsen Pourahmadi, 2016. "Time Series Modelling with Unobserved Components , by Matteo M. Pelagatti . Published by CRC Press , 2015 , pages: 257 . ISBN-13: 978-1-4822-2500-6," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 575-576, July.
- Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
- Chulwoo Han, 2022. "Bimodal Characteristic Returns and Predictability Enhancement via Machine Learning," Management Science, INFORMS, vol. 68(10), pages 7701-7741, October.
- Thi Thu Giang Nguyen & Robert Ślepaczuk, 2022. "The efficiency of various types of input layers of LSTM model in investment strategies on S&P500 index," Working Papers 2022-29, Faculty of Economic Sciences, University of Warsaw.
- Mehmet Sahiner & David G. McMillan & Dimos Kambouroudis, 2023. "Do artificial neural networks provide improved volatility forecasts: Evidence from Asian markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(3), pages 723-762, September.
- Madeline Hui Li Lee & Yee Chee Ser & Ganeshsree Selvachandran & Pham Huy Thong & Le Cuong & Le Hoang Son & Nguyen Trung Tuan & Vassilis C. Gerogiannis, 2022. "A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
- Nwokike Chukwudike C. & Ugoala & Chukwuma B. & Obubu Maxwell & Uche-Ikonne Okezie O. & Offorha Bright C. & Ukomah Henry I., 2020. "Forecasting Monthly Prices of Gold Using Artificial Neural Network," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 9(3), pages 1-2.
- Subhranginee Das & Sarat Chandra Nayak & Biswajit Sahoo, 2022. "Towards Crafting Optimal Functional Link Artificial Neural Networks with Rao Algorithms for Stock Closing Prices Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 1-23, June.
- Axelsson, Birger & Song, Han-Suck, 2023. "Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model," Working Paper Series 23/10, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance, revised 14 Nov 2023.
- Vásquez Sáenz, Javier & Quiroga, Facundo Manuel & Bariviera, Aurelio F., 2023. "Data vs. information: Using clustering techniques to enhance stock returns forecasting," International Review of Financial Analysis, Elsevier, vol. 88(C).
- Abdullahi Osman Ali & Jama Mohamed, 2022. "The optimal forecast model for consumer price index of Puntland State, Somalia," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4549-4572, December.
- Paul Bilokon & Yitao Qiu, 2023. "Transformers versus LSTMs for electronic trading," Papers 2309.11400, arXiv.org.
- Alebachew Abebe & Aboma Temesgen & Belete Kebede, 2023. "Modeling inflation rate factors on present consumption price index in Ethiopia: threshold autoregressive models approach," Future Business Journal, Springer, vol. 9(1), pages 1-12, December.
- Duan, Yunlong & Mu, Chang & Yang, Meng & Deng, Zhiqing & Chin, Tachia & Zhou, Li & Fang, Qifeng, 2021. "Study on early warnings of strategic risk during the process of firms’ sustainable innovation based on an optimized genetic BP neural networks model: Evidence from Chinese manufacturing firms," International Journal of Production Economics, Elsevier, vol. 242(C).
- Farman Ullah Khan & Faridoon Khan & Parvez Ahmed Shaikh, 2023. "Forecasting returns volatility of cryptocurrency by applying various deep learning algorithms," Future Business Journal, Springer, vol. 9(1), pages 1-11, December.
- Muhammad Nadim Hanif & Khurrum S. Mughal & Javed Iqbal, 2018. "A Thick ANN Model for Forecasting Inflation," SBP Working Paper Series 99, State Bank of Pakistan, Research Department.
- Muhammad Nadim Hanif & Muhammad Jahanzeb Malik, 2015.
"Evaluating the Performance of Inflation Forecasting Models of Pakistan,"
SBP Research Bulletin, State Bank of Pakistan, Research Department, vol. 11, pages 43-78.
- Hanif, Muhammad Nadim & Malik, Muhammad Jahanzeb, 2015. "Evaluating Performance of Inflation Forecasting Models of Pakistan," MPRA Paper 66843, University Library of Munich, Germany.
- Luka Jovanovic & Dejan Jovanovic & Nebojsa Bacanin & Ana Jovancai Stakic & Milos Antonijevic & Hesham Magd & Ravi Thirumalaisamy & Miodrag Zivkovic, 2022. "Multi-Step Crude Oil Price Prediction Based on LSTM Approach Tuned by Salp Swarm Algorithm with Disputation Operator," Sustainability, MDPI, vol. 14(21), pages 1-29, November.
- Berthine Nyunga Mpinda & Jules Sadefo-Kamdem & Salomey Osei & Jeremiah Fadugba, 2021. "Accuracies of Model Risks in Finance using Machine Learning," Working Papers hal-03191437, HAL.
- Huicheng Liu, 2018. "Leveraging Financial News for Stock Trend Prediction with Attention-Based Recurrent Neural Network," Papers 1811.06173, arXiv.org.
- Ritika Chopra & Gagan Deep Sharma, 2021. "Application of Artificial Intelligence in Stock Market Forecasting: A Critique, Review, and Research Agenda," JRFM, MDPI, vol. 14(11), pages 1-34, November.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2022-07-11 (Big Data)
- NEP-CMP-2022-07-11 (Computational Economics)
- NEP-FOR-2022-07-11 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.01639. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.