IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v60y2022i1d10.1007_s10614-021-10130-9.html
   My bibliography  Save this article

Towards Crafting Optimal Functional Link Artificial Neural Networks with Rao Algorithms for Stock Closing Prices Prediction

Author

Listed:
  • Subhranginee Das

    (KIIT University)

  • Sarat Chandra Nayak

    (CMR College of Engineering &Technology)

  • Biswajit Sahoo

    (KIIT University)

Abstract

Quite a good number of population-based meta-heuristics based on mimicking natural phenomena are observed in the literature in resolving varieties of complex optimization problems. They are widely used in search of the optimal model parameters of artificial neural networks (ANNs). However, efficiencies of these are mostly dependent on fine tuning algorithm-specific parameters. Rao algorithms are metaphor-less meta-heuristics which do not need any algorithm-specific parameters. Functional link artificial neural network (FLANN) is a flat network and possesses the ability of mapping input–output nonlinear relationships by using amplification in input vector dimension. This article attempts to observe the efficacy of Rao algorithms on searching the most favorable parameters of FLANN, thus forming hybrid models termed as Rao algorithm-based FLANNs (RAFLANNs). The models are evaluated on forecasting five stock markets such as NASDAQ, BSE, DJIA, HSI, and NIKKEI. The RAFLANNs performances are compared with that of variations of FLANN (i.e., FLANN based on gradient descent, multi-verse optimizer, monarch butterfly optimization and genetic algorithm) and conventional models (i.e., MLP, SVM and ARIMA). The proposed models are found better in terms of prediction accuracy, computation time and statistical significance test.

Suggested Citation

  • Subhranginee Das & Sarat Chandra Nayak & Biswajit Sahoo, 2022. "Towards Crafting Optimal Functional Link Artificial Neural Networks with Rao Algorithms for Stock Closing Prices Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 1-23, June.
  • Handle: RePEc:kap:compec:v:60:y:2022:i:1:d:10.1007_s10614-021-10130-9
    DOI: 10.1007/s10614-021-10130-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-021-10130-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-021-10130-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
    2. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Sarat Chandra Nayak & Bijan Bihari Misra, 2020. "Extreme learning with chemical reaction optimization for stock volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-23, December.
    5. Sarat Chandra Nayak & Bijan Bihari Misra, 2018. "Estimating stock closing indices using a GA-weighted condensed polynomial neural network," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-22, December.
    6. Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuka Mohanty & Rajashree Dash, 2023. "A New Dual Normalization for Enhancing the Bitcoin Pricing Capability of an Optimized Low Complexity Neural Net with TOPSIS Evaluation," Mathematics, MDPI, vol. 11(5), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
    2. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    3. Massimiliano Marzo & Paolo Zagaglia, 2010. "Volatility forecasting for crude oil futures," Applied Economics Letters, Taylor & Francis Journals, vol. 17(16), pages 1587-1599.
    4. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
    5. Dimitrios Kartsonakis Mademlis & Nikolaos Dritsakis, 2021. "Volatility Forecasting using Hybrid GARCH Neural Network Models: The Case of the Italian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 11(1), pages 49-60.
    6. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    7. Heitham Al-Hajieh & Hashem AlNemer & Timothy Rodgers & Jacek Niklewski, 2015. "Forecasting the Jordanian stock index: modelling asymmetric volatility and distribution effects within a GARCH framework," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 4(2), pages 9-26.
    8. Daglis, Theodoros & Konstantakis, Konstantinos N. & Michaelides, Panayotis G. & Papadakis, Theodoulos Eleftherios, 2020. "The forecasting ability of solar and space weather data on NASDAQ’s finance sector price index volatility," Research in International Business and Finance, Elsevier, vol. 52(C).
    9. Shiyi Chen & Wolfgang K. Härdle & Kiho Jeong, 2010. "Forecasting volatility with support vector machine-based GARCH model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(4), pages 406-433.
    10. Şener, Emrah & Baronyan, Sayad & Ali Mengütürk, Levent, 2012. "Ranking the predictive performances of value-at-risk estimation methods," International Journal of Forecasting, Elsevier, vol. 28(4), pages 849-873.
    11. repec:hum:wpaper:sfb649dp2015-026 is not listed on IDEAS
    12. Manahov, Viktor & Hudson, Robert & Gebka, Bartosz, 2014. "Does high frequency trading affect technical analysis and market efficiency? And if so, how?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 131-157.
    13. Alessandra Amendola & Vincenzo Candila & Antonio Scognamillo, 2017. "On the influence of US monetary policy on crude oil price volatility," Empirical Economics, Springer, vol. 52(1), pages 155-178, February.
    14. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    15. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
    16. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    17. Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
    18. Costantini, Mauro & Kunst, Robert M., 2021. "On using predictive-ability tests in the selection of time-series prediction models: A Monte Carlo evaluation," International Journal of Forecasting, Elsevier, vol. 37(2), pages 445-460.
    19. M. Mallikarjuna & R. Prabhakara Rao, 2019. "Evaluation of forecasting methods from selected stock market returns," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-16, December.
    20. King, Daniel & Botha, Ferdi, 2015. "Modelling stock return volatility dynamics in selected African markets," Economic Modelling, Elsevier, vol. 45(C), pages 50-73.
    21. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:60:y:2022:i:1:d:10.1007_s10614-021-10130-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.