IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.00104.html
   My bibliography  Save this paper

The Cross-Sectional Intrinsic Entropy. A Comprehensive Stock Market Volatility Estimator

Author

Listed:
  • Claudiu Vinte
  • Marcel Ausloos

Abstract

To take into account the temporal dimension of uncertainty in stock markets, this paper introduces a cross-sectional estimation of stock market volatility based on the intrinsic entropy model. The proposed cross-sectional intrinsic entropy (CSIE) is defined and computed as a daily volatility estimate for the entire market, grounded on the daily traded prices: open, high, low, and close prices (OHLC), along with the daily traded volume for all symbols listed on The New York Stock Exchange (NYSE) and The National Association of Securities Dealers Automated Quotations (NASDAQ). We perform a comparative analysis between the time series obtained from the CSIE and the historical volatility as provided by the estimators: close-to-close, Parkinson, Garman-Klass, Rogers-Satchell, Yang-Zhang, and intrinsic entropy (IE), defined and computed from historical OHLC daily prices of the Standard & Poor's 500 index (S&P500), Dow Jones Industrial Average (DJIA), and the NASDAQ Composite index, respectively, for various time intervals. Our study uses approximately 6000 day reference points, starting on 1 Jan. 2001, until 23 Jan. 2022, for both the NYSE and the NASDAQ. We found that the CSIE market volatility estimator is consistently at least 10 times more sensitive to market changes, compared to the volatility estimate captured through the market indices. Furthermore, beta values confirm a consistently lower volatility risk for market indices overall, between 50% and 90% lower, compared to the volatility risk of the entire market in various time intervals and rolling windows.

Suggested Citation

  • Claudiu Vinte & Marcel Ausloos, 2022. "The Cross-Sectional Intrinsic Entropy. A Comprehensive Stock Market Volatility Estimator," Papers 2205.00104, arXiv.org.
  • Handle: RePEc:arx:papers:2205.00104
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.00104
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    3. John Y. Campbell & Martin Lettau & Burton G. Malkiel & Yexiao Xu, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    4. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    5. Ang, Andrew & Hodrick, Robert J. & Xing, Yuhang & Zhang, Xiaoyan, 2009. "High idiosyncratic volatility and low returns: International and further U.S. evidence," Journal of Financial Economics, Elsevier, vol. 91(1), pages 1-23, January.
    6. Yang, Dennis & Zhang, Qiang, 2000. "Drift-Independent Volatility Estimation Based on High, Low, Open, and Close Prices," The Journal of Business, University of Chicago Press, vol. 73(3), pages 477-491, July.
    7. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    8. Zhanhui Chen & Ralitsa Petkova, 2012. "Does Idiosyncratic Volatility Proxy for Risk Exposure?," The Review of Financial Studies, Society for Financial Studies, vol. 25(9), pages 2745-2787.
    9. Aabo, Tom & Pantzalis, Christos & Park, Jung Chul, 2017. "Idiosyncratic volatility: An indicator of noise trading?," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 136-151.
    10. Pietro Coretto & Michele La Rocca & Giuseppe Storti, 2020. "Improving Many Volatility Forecasts Using Cross-Sectional Volatility Clusters," JRFM, MDPI, vol. 13(4), pages 1-23, March.
    11. Fama, Eugene F, 1990. "Stock Returns, Expected Returns, and Real Activity," Journal of Finance, American Finance Association, vol. 45(4), pages 1089-1108, September.
    12. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    13. Sanjay Sehgal & Vidisha Garg, 2016. "Cross-sectional Volatility and Stock Returns: Evidence for Emerging Markets," Vikalpa: The Journal for Decision Makers, , vol. 41(3), pages 234-246, September.
    14. Byun, Sung Je, 2016. "The usefulness of cross-sectional dispersion for forecasting aggregate stock price volatility," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 162-180.
    15. William Day & Herbert Edelsbrunner, 1984. "Efficient algorithms for agglomerative hierarchical clustering methods," Journal of Classification, Springer;The Classification Society, vol. 1(1), pages 7-24, December.
    16. Barinov, Alexander, 2012. "Aggregate volatility risk: Explaining the small growth anomaly and the new issues puzzle," Journal of Corporate Finance, Elsevier, vol. 18(4), pages 763-781.
    17. Tarnopolski, Mariusz, 2016. "On the relationship between the Hurst exponent, the ratio of the mean square successive difference to the variance, and the number of turning points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 662-673.
    18. Patro, Dilip K. & Qi, Min & Sun, Xian, 2013. "A simple indicator of systemic risk," Journal of Financial Stability, Elsevier, vol. 9(1), pages 105-116.
    19. González-Urteaga, Ana & Rubio, Gonzalo, 2016. "The cross-sectional variation of volatility risk premia," Journal of Financial Economics, Elsevier, vol. 119(2), pages 353-370.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.
    2. Nektarios Aslanidis & Charlotte Christiansen & Neophytos Lambertides & Christos S. Savva, 2019. "Idiosyncratic volatility puzzle: influence of macro-finance factors," Review of Quantitative Finance and Accounting, Springer, vol. 52(2), pages 381-401, February.
    3. Ferreira Filipe, Sara & Grammatikos, Theoharry & Michala, Dimitra, 2016. "Pricing default risk: The good, the bad, and the anomaly," Journal of Financial Stability, Elsevier, vol. 26(C), pages 190-213.
    4. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    5. Figlioli, Bruno & Lima, Fabiano Guasti, 2019. "Stock pricing in Latin America: The synchronicity effect," Emerging Markets Review, Elsevier, vol. 39(C), pages 1-17.
    6. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    7. Kumari, Jyoti & Mahakud, Jitendra & Hiremath, Gourishankar S., 2017. "Determinants of idiosyncratic volatility: Evidence from the Indian stock market," Research in International Business and Finance, Elsevier, vol. 41(C), pages 172-184.
    8. Berggrun, Luis & Lizarzaburu, Edmundo & Cardona, Emilio, 2016. "Idiosyncratic volatility and stock returns: Evidence from the MILA," Research in International Business and Finance, Elsevier, vol. 37(C), pages 422-434.
    9. Abugri, Benjamin A. & Dutta, Sandip, 2014. "Are we overestimating REIT idiosyncratic risk? Analysis of pricing effects and persistence," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 249-259.
    10. Arısoy, Yakup Eser & Altay-Salih, Aslıhan & Akdeniz, Levent, 2015. "Aggregate volatility expectations and threshold CAPM," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 231-253.
    11. Faiza Siddiqui & Yusheng Kong & Hyder Ali & Salma Naz, 2024. "Energy-Related Uncertainty and Idiosyncratic Return Volatility: Implications for Sustainable Investment Strategies in Chinese Firms," Sustainability, MDPI, vol. 16(17), pages 1-39, August.
    12. Wang, Yuming & Ma, Jinpeng, 2014. "Excess volatility and the cross-section of stock returns," The North American Journal of Economics and Finance, Elsevier, vol. 27(C), pages 1-16.
    13. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    14. Su, Zhi & Shu, Tengjia & Yin, Libo, 2018. "The pricing effect of the common pattern in firm-level idiosyncratic volatility: Evidence from A-Share stocks of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 218-235.
    15. Panzica, Roberto Calogero, 2018. "Idiosyncratic volatility puzzle: The role of assets' interconnections," SAFE Working Paper Series 228, Leibniz Institute for Financial Research SAFE.
    16. Hassen Raîs, 2016. "Idiosyncratic Risk and the Cross-Section of European Insurance Equity Returns," Post-Print hal-01764088, HAL.
    17. Ayadi, Mohamed A. & Cao, Xu & Lazrak, Skander & Wang, Yan, 2019. "Do idiosyncratic skewness and kurtosis really matter?," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    18. Rajnish Mehra & Sunil Wahal & Daruo Xie, 2021. "Is idiosyncratic risk conditionally priced?," Quantitative Economics, Econometric Society, vol. 12(2), pages 625-646, May.
    19. Bin Liu & Amalia Di Iorio, 2016. "The pricing of idiosyncratic volatility: An Australian study," Australian Journal of Management, Australian School of Business, vol. 41(2), pages 353-375, May.
    20. Guo, Hui & Qiu, Buhui, 2014. "Options-implied variance and future stock returns," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 93-113.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.00104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.