IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v461y2016icp662-673.html
   My bibliography  Save this article

On the relationship between the Hurst exponent, the ratio of the mean square successive difference to the variance, and the number of turning points

Author

Listed:
  • Tarnopolski, Mariusz

Abstract

The long range dependence of the fractional Brownian motion (fBm), fractional Gaussian noise (fGn), and differentiated fGn (DfGn) is described by the Hurst exponent H. Considering the realizations of these three processes as time series, they might be described by their statistical features, such as half of the ratio of the mean square successive difference to the variance, A, and the number of turning points, T. This paper investigates the relationships between A and H, and between T and H. It is found numerically that the formulae A(H)=aebH in case of fBm, and A(H)=a+bHc for fGn and DfGn, describe well the A(H) relationship. When T(H) is considered, no simple formula is found, and it is empirically found that among polynomials, the fourth and second order description applies best. The most relevant finding is that when plotted in the space of (A,T), the three process types form separate branches. Hence, it is examined whether A and T may serve as Hurst exponent indicators. Some real world data (stock market indices, sunspot numbers, chaotic time series) are analyzed for this purpose, and it is found that the H’s estimated using the H(A) relations (expressed as inverted A(H) functions) are consistent with the H’s extracted with the well known wavelet approach. This allows to efficiently estimate the Hurst exponent based on fast and easy to compute A and T, given that the process type: fBm, fGn or DfGn, is correctly classified beforehand. Finally, it is suggested that the A(H) relation for fGn and DfGn might be an exact (shifted) 3/2 power-law.

Suggested Citation

  • Tarnopolski, Mariusz, 2016. "On the relationship between the Hurst exponent, the ratio of the mean square successive difference to the variance, and the number of turning points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 662-673.
  • Handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:662-673
    DOI: 10.1016/j.physa.2016.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116302722
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grech, D & Mazur, Z, 2004. "Can one make any crash prediction in finance using the local Hurst exponent idea?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 133-145.
    2. Tzouras, Spilios & Anagnostopoulos, Christoforos & McCoy, Emma, 2015. "Financial time series modeling using the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 50-68.
    3. Vandewalle, N. & Ausloos, M., 1997. "Coherent and random sequences in financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 246(3), pages 454-459.
    4. Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
    5. Arianos, Sergio & Carbone, Anna, 2007. "Detrending moving average algorithm: A closed-form approximation of the scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 9-15.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tarnopolski, Mariusz, 2018. "Correlation between the Hurst exponent and the maximal Lyapunov exponent: Examining some low-dimensional conservative maps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 834-844.
    2. Claudiu Vinte & Marcel Ausloos, 2022. "The Cross-Sectional Intrinsic Entropy. A Comprehensive Stock Market Volatility Estimator," Papers 2205.00104, arXiv.org.
    3. Mateos, Diego M. & Zozor, Steeve & Olivares, Felipe, 2020. "Contrasting stochasticity with chaos in a permutation Lempel–Ziv complexity — Shannon entropy plane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    4. Mihailović, Dragutin T. & Nikolić-Đorić, Emilija & Arsenić, Ilija & Malinović-Milićević, Slavica & Singh, Vijay P. & Stošić, Tatijana & Stošić, Borko, 2019. "Analysis of daily streamflow complexity by Kolmogorov measures and Lyapunov exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 290-303.
    5. Gaël Kermarrec, 2020. "On Estimating the Hurst Parameter from Least-Squares Residuals. Case Study: Correlated Terrestrial Laser Scanner Range Noise," Mathematics, MDPI, vol. 8(5), pages 1-23, April.
    6. David, S.A. & Inácio, C.M.C. & Quintino, D.D. & Machado, J.A.T., 2020. "Measuring the Brazilian ethanol and gasoline market efficiency using DFA-Hurst and fractal dimension," Energy Economics, Elsevier, vol. 85(C).
    7. Mariusz Tarnopolski, 2017. "Modeling the price of Bitcoin with geometric fractional Brownian motion: a Monte Carlo approach," Papers 1707.03746, arXiv.org, revised Aug 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zunino, Luciano & Tabak, Benjamin M. & Serinaldi, Francesco & Zanin, Massimiliano & Pérez, Darío G. & Rosso, Osvaldo A., 2011. "Commodity predictability analysis with a permutation information theory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 876-890.
    2. Martin Magris & Jiyeong Kim & Esa Rasanen & Juho Kanniainen, 2017. "Long-range Auto-correlations in Limit Order Book Markets: Inter- and Cross-event Analysis," Papers 1711.03534, arXiv.org.
    3. Ferreira, Paulo, 2018. "Long-range dependencies of Eastern European stock markets: A dynamic detrended analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 454-470.
    4. Tan, Zhengxun & Liu, Juan & Chen, Juanjuan, 2021. "Detecting stock market turning points using wavelet leaders method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    5. Horta, Paulo & Lagoa, Sérgio & Martins, Luís, 2014. "The impact of the 2008 and 2010 financial crises on the Hurst exponents of international stock markets: Implications for efficiency and contagion," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 140-153.
    6. Yuanyuan Zhang & Stephen Chan & Jeffrey Chu & Hana Sulieman, 2020. "On the Market Efficiency and Liquidity of High-Frequency Cryptocurrencies in a Bull and Bear Market," JRFM, MDPI, vol. 13(1), pages 1-14, January.
    7. Serletis, Apostolos & Rosenberg, Aryeh Adam, 2009. "Mean reversion in the US stock market," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2007-2015.
    8. Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
    9. Lee, Minhyuk & Song, Jae Wook & Kim, Sondo & Chang, Woojin, 2018. "Asymmetric market efficiency using the index-based asymmetric-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1278-1294.
    10. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    11. Domino, Krzysztof, 2012. "The use of the Hurst exponent to investigate the global maximum of the Warsaw Stock Exchange WIG20 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 156-169.
    12. Tsionas, Mike G., 2021. "Bayesian analysis of static and dynamic Hurst parameters under stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    13. Rypdal, Martin & Sirnes, Espen & Løvsletten, Ola & Rypdal, Kristoffer, 2013. "Assessing market uncertainty by means of a time-varying intermittency parameter for asset price fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3335-3343.
    14. Jiang, Zhi-Qiang & Xie, Wen-Jie & Zhou, Wei-Xing, 2014. "Testing the weak-form efficiency of the WTI crude oil futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 235-244.
    15. Łukasz Bil & Dariusz Grech & Magdalena Zienowicz, 2017. "Asymmetry of price returns—Analysis and perspectives from a non-extensive statistical physics point of view," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-24, November.
    16. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    17. Domino, Krzysztof, 2020. "Multivariate cumulants in outlier detection for financial data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    18. Domino, Krzysztof & Błachowicz, Tomasz, 2014. "The use of copula functions for modeling the risk of investment in shares traded on the Warsaw Stock Exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 77-85.
    19. Vinodh Madhavan & Rakesh Arrawatia, 2016. "Relative Efficiency of G8 Sovereign Credit Default Swaps and Bond Scrips: An Adaptive Market Hypothesis Perspective," Studies in Microeconomics, , vol. 4(2), pages 127-150, December.
    20. Marcel Ausloos, 2014. "A biased view of a few possible components when reflecting on the present decade financial and economic crisis," Papers 1412.0127, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:662-673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.