IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2204.01884.html
   My bibliography  Save this paper

Policy Learning with Competing Agents

Author

Listed:
  • Roshni Sahoo
  • Stefan Wager

Abstract

Decision makers often aim to learn a treatment assignment policy under a capacity constraint on the number of agents that they can treat. When agents can respond strategically to such policies, competition arises, complicating estimation of the optimal policy. In this paper, we study capacity-constrained treatment assignment in the presence of such interference. We consider a dynamic model where the decision maker allocates treatments at each time step and heterogeneous agents myopically best respond to the previous treatment assignment policy. When the number of agents is large but finite, we show that the threshold for receiving treatment under a given policy converges to the policy's mean-field equilibrium threshold. Based on this result, we develop a consistent estimator for the policy gradient. In a semi-synthetic experiment with data from the National Education Longitudinal Study of 1988, we demonstrate that this estimator can be used for learning capacity-constrained policies in the presence of strategic behavior.

Suggested Citation

  • Roshni Sahoo & Stefan Wager, 2022. "Policy Learning with Competing Agents," Papers 2204.01884, arXiv.org, revised Apr 2024.
  • Handle: RePEc:arx:papers:2204.01884
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2204.01884
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heckman, James J & Lochner, Lance & Taber, Christopher, 1998. "General-Equilibrium Treatment Effects: A Study of Tuition Policy," American Economic Review, American Economic Association, vol. 88(2), pages 381-386, May.
    2. John Bound & Brad Hershbein & Bridget Terry Long, 2009. "Playing the Admissions Game: Student Reactions to Increasing College Competition," Journal of Economic Perspectives, American Economic Association, vol. 23(4), pages 119-146, Fall.
    3. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    4. Evan Munro & Xu Kuang & Stefan Wager, 2021. "Treatment Effects in Market Equilibrium," Papers 2109.11647, arXiv.org, revised Jun 2024.
    5. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
    6. Bhattacharya, Debopam & Dupas, Pascaline, 2012. "Inferring welfare maximizing treatment assignment under budget constraints," Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
    7. Daron Acemoglu & Martin Kaae Jensen, 2015. "Robust Comparative Statics in Large Dynamic Economies," Journal of Political Economy, University of Chicago Press, vol. 123(3), pages 587-640.
    8. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    9. Jon Kleinberg & Himabindu Lakkaraju & Jure Leskovec & Jens Ludwig & Sendhil Mullainathan, 2018. "Human Decisions and Machine Predictions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(1), pages 237-293.
    10. Raj Chetty, 2009. "Sufficient Statistics for Welfare Analysis: A Bridge Between Structural and Reduced-Form Methods," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 451-488, May.
    11. Daniel Bjorkegren & Joshua E. Blumenstock & Samsun Knight, 2020. "Manipulation-Proof Machine Learning," Papers 2004.03865, arXiv.org.
    12. Meena Jagadeesan & Celestine Mendler-Dunner & Moritz Hardt, 2021. "Alternative Microfoundations for Strategic Classification," Papers 2106.12705, arXiv.org.
    13. Monderer, Dov & Sela, Aner, 1996. "A2 x 2Game without the Fictitious Play Property," Games and Economic Behavior, Elsevier, vol. 14(1), pages 144-148, May.
    14. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daido Kido, 2023. "Incorporating Preferences Into Treatment Assignment Problems," Papers 2311.08963, arXiv.org.
    2. Luofeng Liao & Yuan Gao & Christian Kroer, 2022. "Statistical Inference for Fisher Market Equilibrium," Papers 2209.15422, arXiv.org.
    3. Luofeng Liao & Christian Kroer, 2023. "Statistical Inference and A/B Testing for First-Price Pacing Equilibria," Papers 2301.02276, arXiv.org, revised Jun 2023.
    4. Luofeng Liao & Christian Kroer, 2024. "Statistical Inference and A/B Testing in Fisher Markets and Paced Auctions," Papers 2406.15522, arXiv.org, revised Aug 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    2. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    3. Juan Carlos Perdomo, 2023. "The Relative Value of Prediction in Algorithmic Decision Making," Papers 2312.08511, arXiv.org, revised May 2024.
    4. Eric Mbakop & Max Tabord‐Meehan, 2021. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
    5. Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
    6. Firpo, Sergio & Galvao, Antonio F. & Kobus, Martyna & Parker, Thomas & Rosa-Dias, Pedro, 2020. "Loss Aversion and the Welfare Ranking of Policy Interventions," IZA Discussion Papers 13176, Institute of Labor Economics (IZA).
    7. Giovanni Cerulli, 2020. "Optimal Policy Learning: From Theory to Practice," Papers 2011.04993, arXiv.org.
    8. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    9. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
    10. Nygaard, Vegard M. & Sørensen, Bent E. & Wang, Fan, 2022. "Optimal allocations to heterogeneous agents with an application to stimulus checks," Journal of Economic Dynamics and Control, Elsevier, vol. 138(C).
    11. Toru Kitagawa & Weining Wang & Mengshan Xu, 2022. "Policy Choice in Time Series by Empirical Welfare Maximization," Papers 2205.03970, arXiv.org, revised Jun 2023.
    12. Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
    13. Johannes Haushofer & Paul Niehaus & Carlos Paramo & Edward Miguel & Michael W. Walker, 2022. "Targeting Impact versus Deprivation," NBER Working Papers 30138, National Bureau of Economic Research, Inc.
    14. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    15. Juliano Assunção & Robert McMillan & Joshua Murphy & Eduardo Souza-Rodrigues, 2019. "Optimal Environmental Targeting in the Amazon Rainforest," NBER Working Papers 25636, National Bureau of Economic Research, Inc.
    16. Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
    17. Karun Adusumilli & Friedrich Geiecke & Claudio Schilter, 2019. "Dynamically Optimal Treatment Allocation using Reinforcement Learning," Papers 1904.01047, arXiv.org, revised May 2022.
    18. Marianne Bertrand & Bruno Crépon & Alicia Marguerie & Patrick Premand, 2021. "Do Workfare Programs Live Up to Their Promises? Experimental Evidence from Cote D’Ivoire," NBER Working Papers 28664, National Bureau of Economic Research, Inc.
    19. Toru Kitagawa & Aleksey Tetenov, 2017. "Equality-minded treatment choice," CeMMAP working papers 10/17, Institute for Fiscal Studies.
    20. Davide Viviano & Jelena Bradic, 2020. "Fair Policy Targeting," Papers 2005.12395, arXiv.org, revised Jun 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2204.01884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.