IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2204.00180.html
   My bibliography  Save this paper

Measuring Diagnostic Test Performance Using Imperfect Reference Tests: A Partial Identification Approach

Author

Listed:
  • Filip Obradovi'c

Abstract

Diagnostic tests are almost never perfect. Studies quantifying their performance use knowledge of the true health status, measured with a reference diagnostic test. Researchers commonly assume that the reference test is perfect, which is often not the case in practice. When the assumption fails, conventional studies identify "apparent" performance or performance with respect to the reference, but not true performance. This paper provides the smallest possible bounds on the measures of true performance - sensitivity (true positive rate) and specificity (true negative rate), or equivalently false positive and negative rates, in standard settings. Implied bounds on policy-relevant parameters are derived: 1) Prevalence in screened populations; 2) Predictive values. Methods for inference based on moment inequalities are used to construct uniformly consistent confidence sets in level over a relevant family of data distributions. Emergency Use Authorization (EUA) and independent study data for the BinaxNOW COVID-19 antigen test demonstrate that the bounds can be very informative. Analysis reveals that the estimated false negative rates for symptomatic and asymptomatic patients are up to 3.17 and 4.59 times higher than the frequently cited "apparent" false negative rate. Further applicability of the results in the context of imperfect proxies such as survey responses and imputed protected classes is indicated.

Suggested Citation

  • Filip Obradovi'c, 2022. "Measuring Diagnostic Test Performance Using Imperfect Reference Tests: A Partial Identification Approach," Papers 2204.00180, arXiv.org, revised Aug 2024.
  • Handle: RePEc:arx:papers:2204.00180
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2204.00180
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    2. Donald W. K. Andrews & Panle Jia Barwick, 2012. "Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure," Econometrica, Econometric Society, vol. 80(6), pages 2805-2826, November.
    3. Peter Deneef, 1987. "Evaluating Rapid Tests for Streptococcal Pharyngitis," Medical Decision Making, , vol. 7(2), pages 92-96, June.
    4. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2014. "A Practical Two‐Step Method for Testing Moment Inequalities," Econometrica, Econometric Society, vol. 82, pages 1979-2002, September.
    5. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    6. Federico A. Bugni & Ivan A. Canay & Xiaoxia Shi, 2017. "Inference for subvectors and other functions of partially identified parameters in moment inequality models," Quantitative Economics, Econometric Society, vol. 8(1), pages 1-38, March.
    7. Jörg Stoye, 2022. "Bounding infection prevalence by bounding selectivity and accuracy of tests: with application to early COVID-19," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 1-14.
    8. Toulis, Panos, 2021. "Estimation of Covid-19 prevalence from serology tests: A partial identification approach," Journal of Econometrics, Elsevier, vol. 220(1), pages 193-213.
    9. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    10. Gabriel Ziegler, 2020. "Binary Classification Tests, Imperfect Standards, and Ambiguous Information," Papers 2012.11215, arXiv.org, revised Jan 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2018. "Testing For A General Class Of Functional Inequalities," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1018-1064, October.
    3. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers 65/13, Institute for Fiscal Studies.
    5. de Chaisemartin, Clement & D'Haultfoeuille, Xavier, "undated". "Supplement to Fuzzy Differences-in-Differences," Economic Research Papers 270217, University of Warwick - Department of Economics.
    6. Kate Ho & Adam M. Rosen, 2015. "Partial Identification in Applied Research: Benefits and Challenges," NBER Working Papers 21641, National Bureau of Economic Research, Inc.
    7. Aradillas-López, Andrés & Rosen, Adam M., 2022. "Inference in ordered response games with complete information," Journal of Econometrics, Elsevier, vol. 226(2), pages 451-476.
    8. C de Chaisemartin & X D’HaultfŒuille, 2018. "Fuzzy Differences-in-Differences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 999-1028.
    9. Bugni, Federico A. & Canay, Ivan A. & Shi, Xiaoxia, 2015. "Specification tests for partially identified models defined by moment inequalities," Journal of Econometrics, Elsevier, vol. 185(1), pages 259-282.
    10. Federico A. Bugni & Ivan A. Canay & Xiaoxia Shi, 2014. "Inference for functions of partially identified parameters in moment inequality models," CeMMAP working papers 22/14, Institute for Fiscal Studies.
    11. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
    12. Sasaki, Yuya & Takahashi, Yuya & Xin, Yi & Hu, Yingyao, 2023. "Dynamic discrete choice models with incomplete data: Sharp identification," Journal of Econometrics, Elsevier, vol. 236(1).
    13. Ivan A. Canay & Azeem M. Shaikh, 2016. "Practical and theoretical advances in inference for partially identified models," CeMMAP working papers CWP05/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Jorg Stoye, 2020. "A Simple, Short, but Never-Empty Confidence Interval for Partially Identified Parameters," Papers 2010.10484, arXiv.org, revised Dec 2020.
    15. Hsieh, Yu-Wei & Shi, Xiaoxia & Shum, Matthew, 2022. "Inference on estimators defined by mathematical programming," Journal of Econometrics, Elsevier, vol. 226(2), pages 248-268.
    16. Hiroaki Kaido & Jiaxuan Li & Marc Rysman, 2018. "Moment Inequalities in the Context of Simulated and Predicted Variables," Papers 1804.03674, arXiv.org.
    17. Ting Ye & Luke Keele & Raiden Hasegawa & Dylan S. Small, 2020. "A Negative Correlation Strategy for Bracketing in Difference-in-Differences," Papers 2006.02423, arXiv.org, revised Jun 2022.
    18. Andrew Chesher & Adam Rosen, 2015. "Characterizations of identified sets delivered by structural econometric models," CeMMAP working papers CWP63/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Donald S. Poskitt & Xueyan Zhao, 2023. "Bootstrap Hausdorff Confidence Regions for Average Treatment Effect Identified Sets," Monash Econometrics and Business Statistics Working Papers 9/23, Monash University, Department of Econometrics and Business Statistics.
    20. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2204.00180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.