IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2006.02423.html
   My bibliography  Save this paper

A Negative Correlation Strategy for Bracketing in Difference-in-Differences

Author

Listed:
  • Ting Ye
  • Luke Keele
  • Raiden Hasegawa
  • Dylan S. Small

Abstract

The method of difference-in-differences (DID) is widely used to study the causal effect of policy interventions in observational studies. DID employs a before and after comparison of the treated and control units to remove bias due to time-invariant unmeasured confounders under the parallel trends assumption. Estimates from DID, however, will be biased if the outcomes for the treated and control units evolve differently in the absence of treatment, namely if the parallel trends assumption is violated. We propose a general identification strategy that leverages two groups of control units whose outcomes relative to the treated units exhibit a negative correlation, and achieves partial identification of the average treatment effect for the treated. The identified set is of a union bounds form that involves the minimum and maximum operators, which makes the canonical bootstrap generally inconsistent and naive methods overly conservative. By utilizing the directional inconsistency of the bootstrap distribution, we develop a novel bootstrap method to construct uniformly valid confidence intervals for the identified set and parameter of interest when the identified set is of a union bounds form, and we establish the method's theoretical properties. We develop a simple falsification test and sensitivity analysis. We apply the proposed strategy for bracketing to study whether minimum wage laws affect employment levels.

Suggested Citation

  • Ting Ye & Luke Keele & Raiden Hasegawa & Dylan S. Small, 2020. "A Negative Correlation Strategy for Bracketing in Difference-in-Differences," Papers 2006.02423, arXiv.org, revised Jun 2022.
  • Handle: RePEc:arx:papers:2006.02423
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2006.02423
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
    2. Zhihong Cai & Manabu Kuroki & Judea Pearl & Jin Tian, 2008. "Bounds on Direct Effects in the Presence of Confounded Intermediate Variables," Biometrics, The International Biometric Society, vol. 64(3), pages 695-701, September.
    3. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    4. Guildo W. Imbens, 2003. "Sensitivity to Exogeneity Assumptions in Program Evaluation," American Economic Review, American Economic Association, vol. 93(2), pages 126-132, May.
    5. Angrist, Joshua D. & Krueger, Alan B., 1999. "Empirical strategies in labor economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 3, chapter 23, pages 1277-1366, Elsevier.
    6. Sonja A. Swanson & Miguel A. Hernán & Matthew Miller & James M. Robins & Thomas S. Richardson, 2018. "Partial Identification of the Average Treatment Effect Using Instrumental Variables: Review of Methods for Binary Instruments, Treatments, and Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 933-947, April.
    7. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    8. Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
    9. Zahra Siddique, 2013. "Partially Identified Treatment Effects Under Imperfect Compliance: The Case of Domestic Violence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 504-513, June.
    10. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    11. Jorg Stoye, 2009. "More on Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 77(4), pages 1299-1315, July.
    12. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    13. Imai, Kosuke, 2008. "Sharp bounds on the causal effects in randomized experiments with "truncation-by-death"," Statistics & Probability Letters, Elsevier, vol. 78(2), pages 144-149, February.
    14. Charles F. Manski & John V. Pepper, 2000. "Monotone Instrumental Variables, with an Application to the Returns to Schooling," Econometrica, Econometric Society, vol. 68(4), pages 997-1012, July.
    15. Federico A. Bugni & Ivan A. Canay & Xiaoxia Shi, 2017. "Inference for subvectors and other functions of partially identified parameters in moment inequality models," Quantitative Economics, Econometric Society, vol. 8(1), pages 1-38, March.
    16. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    17. Stephen G. Donald & Kevin Lang, 2007. "Inference with Difference-in-Differences and Other Panel Data," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 221-233, May.
    18. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    19. repec:cte:werepe:we1233 is not listed on IDEAS
    20. Tyler J. Vanderweele, 2011. "Controlled Direct and Mediated Effects: Definition, Identification and Bounds," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(3), pages 551-563, September.
    21. Rosenbaum, Paul R., 2010. "Design Sensitivity and Efficiency in Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 692-702.
    22. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    23. Keisuke Hirano & Jack R. Porter, 2012. "Impossibility Results for Nondifferentiable Functionals," Econometrica, Econometric Society, vol. 80(4), pages 1769-1790, July.
    24. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    25. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    26. Donald W. K. Andrews & Sukjin Han, 2009. "Invalidity of the bootstrap and the m out of n bootstrap for confidence interval endpoints defined by moment inequalities," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 172-199, January.
    27. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    28. Federico A. Bugni, 2010. "Bootstrap Inference in Partially Identified Models Defined by Moment Inequalities: Coverage of the Identified Set," Econometrica, Econometric Society, vol. 78(2), pages 735-753, March.
    29. Carlos A. Flores & Alfonso Flores-Lagunes, 2013. "Partial Identification of Local Average Treatment Effects With an Invalid Instrument," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 534-545, October.
    30. Charles F. Manski & John V. Pepper, 2009. "More on monotone instrumental variables," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 200-216, January.
    31. Canay, Ivan A., 2010. "EL inference for partially identified models: Large deviations optimality and bootstrap validity," Journal of Econometrics, Elsevier, vol. 156(2), pages 408-425, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyunghoon Ban & D'esir'e K'edagni, 2022. "Robust Difference-in-differences Models," Papers 2211.06710, arXiv.org, revised Aug 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
    3. Donald S. Poskitt & Xueyan Zhao, 2023. "Bootstrap Hausdorff Confidence Regions for Average Treatment Effect Identified Sets," Monash Econometrics and Business Statistics Working Papers 9/23, Monash University, Department of Econometrics and Business Statistics.
    4. Kate Ho & Adam M. Rosen, 2015. "Partial Identification in Applied Research: Benefits and Challenges," NBER Working Papers 21641, National Bureau of Economic Research, Inc.
    5. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Tsunao Okumura & Emiko Usui, 2014. "Concave‐monotone treatment response and monotone treatment selection: With an application to the returns to schooling," Quantitative Economics, Econometric Society, vol. 5, pages 175-194, March.
    7. Sasaki, Yuya & Takahashi, Yuya & Xin, Yi & Hu, Yingyao, 2023. "Dynamic discrete choice models with incomplete data: Sharp identification," Journal of Econometrics, Elsevier, vol. 236(1).
    8. Fan Yang & Dylan S. Small, 2016. "Using post-outcome measurement information in censoring-by-death problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 299-318, January.
    9. Beresteanu, Arie & Molchanov, Ilya & Molinari, Francesca, 2012. "Partial identification using random set theory," Journal of Econometrics, Elsevier, vol. 166(1), pages 17-32.
    10. Yuan Liao & Anna Simoni, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," Papers 1212.3267, arXiv.org, revised Nov 2013.
    11. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    12. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    13. Federico A. Bugni & Ivan A. Canay & Xiaoxia Shi, 2014. "Inference for functions of partially identified parameters in moment inequality models," CeMMAP working papers 22/14, Institute for Fiscal Studies.
    14. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    15. Juan Carlos Escanciano & Lin Zhu, 2013. "Set inferences and sensitivity analysis in semiparametric conditionally identified models," CeMMAP working papers 55/13, Institute for Fiscal Studies.
    16. Jorg Stoye, 2020. "A Simple, Short, but Never-Empty Confidence Interval for Partially Identified Parameters," Papers 2010.10484, arXiv.org, revised Dec 2020.
    17. Sung Jae Jun & Sokbae Lee, 2023. "Identifying the Effect of Persuasion," Journal of Political Economy, University of Chicago Press, vol. 131(8), pages 2032-2058.
    18. Brendan Kline & Elie Tamer, 2016. "Bayesian inference in a class of partially identified models," Quantitative Economics, Econometric Society, vol. 7(2), pages 329-366, July.
    19. Chen, Xuan & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2015. "Going Beyond LATE: Bounding Average Treatment Effects of Job Corps Training," IZA Discussion Papers 9511, Institute of Labor Economics (IZA).
    20. Liao, Yuan & Simoni, Anna, 2019. "Bayesian inference for partially identified smooth convex models," Journal of Econometrics, Elsevier, vol. 211(2), pages 338-360.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2006.02423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.