IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2010.10484.html
   My bibliography  Save this paper

A Simple, Short, but Never-Empty Confidence Interval for Partially Identified Parameters

Author

Listed:
  • Jorg Stoye

Abstract

This paper revisits the simple, but empirically salient, problem of inference on a real-valued parameter that is partially identified through upper and lower bounds with asymptotically normal estimators. A simple confidence interval is proposed and is shown to have the following properties: - It is never empty or awkwardly short, including when the sample analog of the identified set is empty. - It is valid for a well-defined pseudotrue parameter whether or not the model is well-specified. - It involves no tuning parameters and minimal computation. Computing the interval requires concentrating out one scalar nuisance parameter. In most cases, the practical result will be simple: To achieve 95% coverage, report the union of a simple 90% (!) confidence interval for the identified set and a standard 95% confidence interval for the pseudotrue parameter. For uncorrelated estimators -- notably if bounds are estimated from distinct subsamples -- and conventional coverage levels, validity of this simple procedure can be shown analytically. The case obtains in the motivating empirical application (de Quidt, Haushofer, and Roth, 2018), in which improvement over existing inference methods is demonstrated. More generally, simulations suggest that the novel confidence interval has excellent length and size control. This is partly because, in anticipation of never being empty, the interval can be made shorter than conventional ones in relevant regions of sample space.

Suggested Citation

  • Jorg Stoye, 2020. "A Simple, Short, but Never-Empty Confidence Interval for Partially Identified Parameters," Papers 2010.10484, arXiv.org, revised Dec 2020.
  • Handle: RePEc:arx:papers:2010.10484
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2010.10484
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan de Quidt & Johannes Haushofer & Christopher Roth, 2018. "Measuring and Bounding Experimenter Demand," American Economic Review, American Economic Association, vol. 108(11), pages 3266-3302, November.
    2. Donald W.K. Andrews & Soonwoo Kwon, 2019. "Inference in Moment Inequality Models That Is Robust to Spurious Precision under Model Misspecification," Cowles Foundation Discussion Papers 2184, Cowles Foundation for Research in Economics, Yale University, revised Oct 2019.
    3. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    4. Donald W. K. Andrews & Panle Jia Barwick, 2012. "Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure," Econometrica, Econometric Society, vol. 80(6), pages 2805-2826, November.
    5. Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
    6. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    7. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2014. "A Practical Two‐Step Method for Testing Moment Inequalities," Econometrica, Econometric Society, vol. 82, pages 1979-2002, September.
    8. Bugni, Federico A. & Canay, Ivan A. & Shi, Xiaoxia, 2015. "Specification tests for partially identified models defined by moment inequalities," Journal of Econometrics, Elsevier, vol. 185(1), pages 259-282.
    9. Horowitz, Joel L & Manski, Charles F, 1995. "Identification and Robustness with Contaminated and Corrupted Data," Econometrica, Econometric Society, vol. 63(2), pages 281-302, March.
    10. Francesca Molinari, 2020. "Microeconometrics with Partial Identification," Papers 2004.11751, arXiv.org.
    11. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    12. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 1071-1102.
    13. Maria Ponomareva & Elie Tamer, 2011. "Misspecification in moment inequality models: back to moment equalities?," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 186-203, July.
    14. Rosen, Adam M., 2008. "Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities," Journal of Econometrics, Elsevier, vol. 146(1), pages 107-117, September.
    15. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    16. Federico A. Bugni, 2010. "Bootstrap Inference in Partially Identified Models Defined by Moment Inequalities: Coverage of the Identified Set," Econometrica, Econometric Society, vol. 78(2), pages 735-753, March.
    17. Canay, Ivan A., 2010. "EL inference for partially identified models: Large deviations optimality and bootstrap validity," Journal of Econometrics, Elsevier, vol. 156(2), pages 408-425, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcoux, Mathieu & Russell, Thomas M. & Wan, Yuanyuan, 2024. "A simple specification test for models with many conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 242(1).
    2. Sokbae Lee & Martin Weidner, 2021. "Bounding Treatment Effects by Pooling Limited Information across Observations," Papers 2111.05243, arXiv.org, revised Dec 2023.
    3. Aibo Gong, 2021. "Bounds for Treatment Effects in the Presence of Anticipatory Behavior," Papers 2111.06573, arXiv.org, revised Dec 2022.
    4. Phillip Heiler, 2022. "Heterogeneous Treatment Effect Bounds under Sample Selection with an Application to the Effects of Social Media on Political Polarization," Papers 2209.04329, arXiv.org, revised Jul 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Francesca Molinari, 2019. "Econometrics with Partial Identification," CeMMAP working papers CWP25/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Donald S. Poskitt & Xueyan Zhao, 2023. "Bootstrap Hausdorff Confidence Regions for Average Treatment Effect Identified Sets," Monash Econometrics and Business Statistics Working Papers 9/23, Monash University, Department of Econometrics and Business Statistics.
    4. Federico A. Bugni & Ivan A. Canay & Xiaoxia Shi, 2014. "Inference for functions of partially identified parameters in moment inequality models," CeMMAP working papers 22/14, Institute for Fiscal Studies.
    5. Wooyoung Kim & Koohyun Kwon & Soonwoo Kwon & Sokbae Lee, 2018. "The identification power of smoothness assumptions in models with counterfactual outcomes," Quantitative Economics, Econometric Society, vol. 9(2), pages 617-642, July.
    6. Sasaki, Yuya & Takahashi, Yuya & Xin, Yi & Hu, Yingyao, 2023. "Dynamic discrete choice models with incomplete data: Sharp identification," Journal of Econometrics, Elsevier, vol. 236(1).
    7. Ivan A. Canay & Azeem M. Shaikh, 2016. "Practical and theoretical advances in inference for partially identified models," CeMMAP working papers CWP05/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Brendan Kline & Elie Tamer, 2016. "Bayesian inference in a class of partially identified models," Quantitative Economics, Econometric Society, vol. 7(2), pages 329-366, July.
    9. Magnac, Thierry, 2013. "Identification partielle : méthodes et conséquences pour les applications empiriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 233-258, Décembre.
    10. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
    11. Kate Ho & Adam M. Rosen, 2015. "Partial Identification in Applied Research: Benefits and Challenges," NBER Working Papers 21641, National Bureau of Economic Research, Inc.
    12. Bugni, Federico A. & Canay, Ivan A. & Shi, Xiaoxia, 2015. "Specification tests for partially identified models defined by moment inequalities," Journal of Econometrics, Elsevier, vol. 185(1), pages 259-282.
    13. Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2018. "Testing For A General Class Of Functional Inequalities," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1018-1064, October.
    14. Christian Bontemps & Thierry Magnac, 2017. "Set Identification, Moment Restrictions, and Inference," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 103-129, September.
    15. Arun Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2012. "Inference for best linear approximations to set identified functions," CeMMAP working papers 43/12, Institute for Fiscal Studies.
    16. Beresteanu, Arie & Molchanov, Ilya & Molinari, Francesca, 2012. "Partial identification using random set theory," Journal of Econometrics, Elsevier, vol. 166(1), pages 17-32.
    17. Arun G. Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2019. "Best Linear Approximations to Set Identified Functions: With an Application to the Gender Wage Gap," NBER Working Papers 25593, National Bureau of Economic Research, Inc.
    18. Yuan Liao & Anna Simoni, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," Papers 1212.3267, arXiv.org, revised Nov 2013.
    19. Lukáš Lafférs, 2019. "Identification in Models with Discrete Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 657-696, February.
    20. Matias D. Cattaneo & Xinwei Ma & Yusufcan Masatlioglu & Elchin Suleymanov, 2020. "A Random Attention Model," Journal of Political Economy, University of Chicago Press, vol. 128(7), pages 2796-2836.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.10484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.