IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2203.08143.html
   My bibliography  Save this paper

HiSA-SMFM: Historical and Sentiment Analysis based Stock Market Forecasting Model

Author

Listed:
  • Ishu Gupta
  • Tarun Kumar Madan
  • Sukhman Singh
  • Ashutosh Kumar Singh

Abstract

One of the pillars to build a country's economy is the stock market. Over the years, people are investing in stock markets to earn as much profit as possible from the amount of money that they possess. Hence, it is vital to have a prediction model which can accurately predict future stock prices. With the help of machine learning, it is not an impossible task as the various machine learning techniques if modeled properly may be able to provide the best prediction values. This would enable the investors to decide whether to buy, sell or hold the share. The aim of this paper is to predict the future of the financial stocks of a company with improved accuracy. In this paper, we have proposed the use of historical as well as sentiment data to efficiently predict stock prices by applying LSTM. It has been found by analyzing the existing research in the area of sentiment analysis that there is a strong correlation between the movement of stock prices and the publication of news articles. Therefore, in this paper, we have integrated these factors to predict the stock prices more accurately.

Suggested Citation

  • Ishu Gupta & Tarun Kumar Madan & Sukhman Singh & Ashutosh Kumar Singh, 2022. "HiSA-SMFM: Historical and Sentiment Analysis based Stock Market Forecasting Model," Papers 2203.08143, arXiv.org.
  • Handle: RePEc:arx:papers:2203.08143
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2203.08143
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hedayati , Amin & Hedayati , Moein & Esfandyari, Morteza, 2016. "Stock market index prediction using artificial neural network," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 21(41), pages 89-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wai Khuen Cheng & Khean Thye Bea & Steven Mun Hong Leow & Jireh Yi-Le Chan & Zeng-Wei Hong & Yen-Lin Chen, 2022. "A Review of Sentiment, Semantic and Event-Extraction-Based Approaches in Stock Forecasting," Mathematics, MDPI, vol. 10(14), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jessie Sun, 2019. "A Stock Selection Method Based on Earning Yield Forecast Using Sequence Prediction Models," Papers 1905.04842, arXiv.org.
    2. Caporale, Guglielmo Maria & Gil-Alana, Luis Alberiko & Poza, Carlos, 2022. "The COVID-19 pandemic and the degree of persistence of US stock prices and bond yields," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 118-123.
    3. Sevcan Uzun & Ahmet Sensoy & Duc Khuong Nguyen, 2023. "Jump forecasting in foreign exchange markets: A high‐frequency analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 578-624, April.
    4. Jeonghwa Cha & Kyungbo Park & Hangook Kim & Jongyi Hong, 2023. "Crisis Index Prediction Based on Momentum Theory and Earnings Downside Risk Theory: Focusing on South Korea’s Energy Industry," Energies, MDPI, vol. 16(5), pages 1-20, February.
    5. Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, vol. 12(23), pages 1-18, November.
    6. Yiyang Zheng, 2022. "Neural Network and Order Flow, Technical Analysis: Predicting short-term direction of futures contract," Papers 2203.12457, arXiv.org.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Janusz Gajda & Rafał Walasek, 2020. "Fractional differentiation and its use in machine learning," Working Papers 2020-32, Faculty of Economic Sciences, University of Warsaw.
    9. Federico Mecchia & Marcellino Gaudenzi, 2022. "The dynamics of the prices of the companies of the STOXX Europe 600 Index through the logit model and neural network," Papers 2206.09899, arXiv.org.
    10. Hongbing OUYANG & Xiaolu WEI & Qiufeng WU, 2020. "Stock Index Pattern Discovery via Toeplitz Inverse Covariance-based Clustering," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 58-72, July.
    11. Priyank Sonkiya & Vikas Bajpai & Anukriti Bansal, 2021. "Stock price prediction using BERT and GAN," Papers 2107.09055, arXiv.org.
    12. Yuancheng Si & Saralees Nadarajah, 2023. "A Statistical Analysis of Chinese Stock Indices Returns From Approach of Parametric Distributions Fitting," Annals of Data Science, Springer, vol. 10(1), pages 73-88, February.
    13. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    14. Xiaoping Du & Lelai Deng, 2018. "Current Core Competencies Trend of Small to Medium Enterprises (SMEs) in China—A Concurrent Comprehensive Evaluation and Active Learning Study of Newly Listed Chinese Stocks from 2015 through 2017," Data, MDPI, vol. 3(3), pages 1-22, July.
    15. Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
    16. Fahad Mostafa & Pritam Saha & Mohammad Rafiqul Islam & Nguyet Nguyen, 2021. "GJR-GARCH Volatility Modeling under NIG and ANN for Predicting Top Cryptocurrencies," JRFM, MDPI, vol. 14(9), pages 1-22, September.
    17. Mourad Mroua & Ahlem Lamine, 2023. "Financial time series prediction under Covid-19 pandemic crisis with Long Short-Term Memory (LSTM) network," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-15, December.
    18. Dhruhi Sheth & Manan Shah, 2023. "Predicting stock market using machine learning: best and accurate way to know future stock prices," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 1-18, February.
    19. Virginie Terraza & Aslı Boru İpek & Mohammad Mahdi Rounaghi, 2024. "The nexus between the volatility of Bitcoin, gold, and American stock markets during the COVID-19 pandemic: evidence from VAR-DCC-EGARCH and ANN models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-34, December.
    20. Lin, Yu & Yan, Yan & Xu, Jiali & Liao, Ying & Ma, Feng, 2021. "Forecasting stock index price using the CEEMDAN-LSTM model," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2203.08143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.