IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v13y2020i8p181-d399004.html
   My bibliography  Save this article

Comparison of Financial Models for Stock Price Prediction

Author

Listed:
  • Mohammad Rafiqul Islam

    (Department of Mathematics and Statistics, Youngstown State University, Youngstown, OH 44555, USA)

  • Nguyet Nguyen

    (Department of Mathematics and Statistics, Youngstown State University, Youngstown, OH 44555, USA)

Abstract

Time series analysis of daily stock data and building predictive models are complicated. This paper presents a comparative study for stock price prediction using three different methods, namely autoregressive integrated moving average, artificial neural network, and stochastic process-geometric Brownian motion. Each of the methods is used to build predictive models using historical stock data collected from Yahoo Finance. Finally, output from each of the models is compared to the actual stock price. Empirical results show that the conventional statistical model and the stochastic model provide better approximation for next-day stock price prediction compared to the neural network model.

Suggested Citation

  • Mohammad Rafiqul Islam & Nguyet Nguyen, 2020. "Comparison of Financial Models for Stock Price Prediction," JRFM, MDPI, vol. 13(8), pages 1-19, August.
  • Handle: RePEc:gam:jjrfmx:v:13:y:2020:i:8:p:181-:d:399004
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/13/8/181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/13/8/181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheung, Yin-Wong & Lai, Kon S, 1995. "Lag Order and Critical Values of a Modified Dickey-Fuller Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 57(3), pages 411-419, August.
    2. Cheung, Yin-Wong & Lai, Kon S, 1995. "Lag Order and Critical Values of the Augmented Dickey-Fuller Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 277-280, July.
    3. Mahesh Kumar Tambi, 2005. "Forecasting Exchange Rate: A Univariate Out-of-Sample Approach (Box-Jenkins Methodology)," The IUP Journal of Bank Management, IUP Publications, vol. 0(2), pages 60-74, MAY.
    4. Jingtao Yao & Chew Lim Tan & Hean-Lee Poh, 1999. "Neural Networks For Technical Analysis: A Study On Klci," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 221-241.
    5. Kenny, Geoff & Meyler, Aidan & Quinn, Terry, 1998. "Forecasting Irish inflation using ARIMA models," Research Technical Papers 3/RT/98, Central Bank of Ireland.
    6. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Bouasabah & Oshamah Ibrahim Khalaf, 2023. "A Technical Indicator for a Short-term Trading Decision in the NASDAQ Market," Advances in Decision Sciences, Asia University, Taiwan, vol. 27(3), pages 1-13, September.
    2. Chuen Yik Kang & Chin Poo Lee & Kian Ming Lim, 2022. "Cryptocurrency Price Prediction with Convolutional Neural Network and Stacked Gated Recurrent Unit," Data, MDPI, vol. 7(11), pages 1-13, October.
    3. Shaswat Mohanty & Anirudh Vijay & Nandagopan Gopakumar, 2022. "StockBot: Using LSTMs to Predict Stock Prices," Papers 2207.06605, arXiv.org, revised Jul 2022.
    4. Aigner, Philipp, 2023. "Identifying scenarios for the own risk and solvency assessment of insurance companies," ICIR Working Paper Series 48/23, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark J Holmes & Jesús Otero & Theodore Panagiotidis, 2018. "Climbing the property ladder: An analysis of market integration in London property prices," Urban Studies, Urban Studies Journal Limited, vol. 55(12), pages 2660-2681, September.
    2. Cheung, Yin-Wong & Chinn, Menzie D. & Qian, XingWang, 2014. "The structural behavior of China–US trade flows," BOFIT Discussion Papers 23/2014, Bank of Finland Institute for Emerging Economies (BOFIT).
    3. Holmes, Mark J. & Otero, Jesús & Panagiotidis, Theodore, 2013. "On the dynamics of gasoline market integration in the United States: Evidence from a pair-wise approach," Energy Economics, Elsevier, vol. 36(C), pages 503-510.
    4. Luisanna Onnis & Patrizio Tirelli, 2015. "Shadow economy: Does it matter for money velocity?," Empirical Economics, Springer, vol. 49(3), pages 839-858, November.
    5. Jean-Philippe Gervais, 2011. "Disentangling nonlinearities in the long- and short-run price relationships: an application to the US hog/pork supply chain," Applied Economics, Taylor & Francis Journals, vol. 43(12), pages 1497-1510.
    6. Sebastian Kripfganz & Daniel C. Schneider, 2023. "ardl: Estimating autoregressive distributed lag and equilibrium correction models," Stata Journal, StataCorp LP, vol. 23(4), pages 983-1019, December.
    7. Baumöhl, Eduard & Lyócsa, Štefan, 2012. "Constructing weekly returns based on daily stock market data: A puzzle for empirical research?," MPRA Paper 43431, University Library of Munich, Germany.
    8. Lambert, Thomas, 2021. "The Baran Ratio, Investment, and British Economic Growth and Investment," MPRA Paper 109546, University Library of Munich, Germany.
    9. A. M. Robert Taylor & Dick van Dijk, 2002. "Can Tests for Stochastic Unit Roots Provide Useful Portmanteau Tests for Persistence?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(4), pages 381-397, September.
    10. Nazlioglu, Saban & Lee, Junsoo, 2020. "Response surface estimates of the LM unit root tests," Economics Letters, Elsevier, vol. 192(C).
    11. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    12. Kim, Jae & Choi, In, 2015. "Unit Roots in Economic and Financial Time Series: A Re-Evaluation based on Enlightened Judgement," MPRA Paper 68411, University Library of Munich, Germany.
    13. Cheung, Yin-Wong & Chinn, Menzie D. & Fujii, Eiji, 2003. "China, Hong Kong, and Taiwan: A quantitative assessment of real and financial integration," China Economic Review, Elsevier, vol. 14(3), pages 281-303.
    14. Betchani H. M. Tchereni & Ahmad Makawa & Fredrick Banda, 2022. "Effectiveness of the Asset Price Channel as a Monetary Policy Transmission Mechanism in Malawi: Evidence from Time Series Data," International Journal of Economics and Financial Issues, Econjournals, vol. 12(5), pages 160-168, September.
    15. repec:bla:obuest:v:63:y:2001:i:4:p:459-73 is not listed on IDEAS
    16. repec:zbw:bofitp:2014_023 is not listed on IDEAS
    17. Kim, Hyeongwoo & Son, Jisoo, 2024. "What charge-off rates are predictable by macroeconomic latent factors?," Journal of Financial Stability, Elsevier, vol. 74(C).
    18. Yin-Wong Cheung & Menzie D. Chinn & Xingwang Qian, 2014. "The Structural Behavior of China-US Trade Flows," CESifo Working Paper Series 5123, CESifo.
    19. Dragone, Davide & Raggi, Davide, 2021. "Resolving the milk addiction paradox," Journal of Health Economics, Elsevier, vol. 77(C).
    20. Kumar, Ronald Ravinesh & Stauvermann, Peter Josef & Patel, Arvind & Kumar, Nikeel, 2017. "The effect of energy on output per worker in the Balkan Peninsula: A country-specific study of 12 nations in the Energy Community," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1223-1239.
    21. Cheung, Yin-Wong & Chinn, Menzie D. & Fujii, Eiji, 2006. "The Chinese economies in global context: The integration process and its determinants," Journal of the Japanese and International Economies, Elsevier, vol. 20(1), pages 128-153, March.
    22. Dooyeon Cho & Seunghwa Rho, 2024. "Reassessing growth vulnerability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 225-234, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:13:y:2020:i:8:p:181-:d:399004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.