IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v18y2018i11p1877-1886.html
   My bibliography  Save this article

Turbocharging Monte Carlo pricing for the rough Bergomi model

Author

Listed:
  • Ryan McCrickerd
  • Mikko S. Pakkanen

Abstract

The rough Bergomi model, introduced by Bayer et al. [Quant. Finance, 2016, 16(6), 887–904], is one of the recent rough volatility models that are consistent with the stylised fact of implied volatility surfaces being essentially time-invariant, and are able to capture the term structure of skew observed in equity markets. In the absence of analytical European option pricing methods for the model, we focus on reducing the runtime-adjusted variance of Monte Carlo implied volatilities, thereby contributing to the model’s calibration by simulation. We employ a novel composition of variance reduction methods, immediately applicable to any conditionally log-normal stochastic volatility model. Assuming one targets implied volatility estimates with a given degree of confidence, thus calibration RMSE, the results we demonstrate equate to significant runtime reductions—roughly 20 times on average, across different correlation regimes.

Suggested Citation

  • Ryan McCrickerd & Mikko S. Pakkanen, 2018. "Turbocharging Monte Carlo pricing for the rough Bergomi model," Quantitative Finance, Taylor & Francis Journals, vol. 18(11), pages 1877-1886, November.
  • Handle: RePEc:taf:quantf:v:18:y:2018:i:11:p:1877-1886
    DOI: 10.1080/14697688.2018.1459812
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2018.1459812
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2018.1459812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:18:y:2018:i:11:p:1877-1886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.