IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.03070.html
   My bibliography  Save this paper

Robust Generalized Method of Moments: A Finite Sample Viewpoint

Author

Listed:
  • Dhruv Rohatgi
  • Vasilis Syrgkanis

Abstract

For many inference problems in statistics and econometrics, the unknown parameter is identified by a set of moment conditions. A generic method of solving moment conditions is the Generalized Method of Moments (GMM). However, classical GMM estimation is potentially very sensitive to outliers. Robustified GMM estimators have been developed in the past, but suffer from several drawbacks: computational intractability, poor dimension-dependence, and no quantitative recovery guarantees in the presence of a constant fraction of outliers. In this work, we develop the first computationally efficient GMM estimator (under intuitive assumptions) that can tolerate a constant $\epsilon$ fraction of adversarially corrupted samples, and that has an $\ell_2$ recovery guarantee of $O(\sqrt{\epsilon})$. To achieve this, we draw upon and extend a recent line of work on algorithmic robust statistics for related but simpler problems such as mean estimation, linear regression and stochastic optimization. As two examples of the generality of our algorithm, we show how our estimation algorithm and assumptions apply to instrumental variables linear and logistic regression. Moreover, we experimentally validate that our estimator outperforms classical IV regression and two-stage Huber regression on synthetic and semi-synthetic datasets with corruption.

Suggested Citation

  • Dhruv Rohatgi & Vasilis Syrgkanis, 2021. "Robust Generalized Method of Moments: A Finite Sample Viewpoint," Papers 2110.03070, arXiv.org, revised Oct 2021.
  • Handle: RePEc:arx:papers:2110.03070
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.03070
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amemiya, Takeshi, 1982. "Two Stage Least Absolute Deviations Estimators," Econometrica, Econometric Society, vol. 50(3), pages 689-711, May.
    2. Tamara Broderick & Ryan Giordano & Rachael Meager, 2020. "An Automatic Finite-Sample Robustness Metric: When Can Dropping a Little Data Make a Big Difference?," Papers 2011.14999, arXiv.org, revised Jul 2023.
    3. Gabriela V. Cohen Freue & Hernan Ortiz-Molina & Ruben H. Zamar, 2013. "A Natural Robustification of the Ordinary Instrumental Variables Estimator," Biometrics, The International Biometric Society, vol. 69(3), pages 641-650, September.
    4. Ronchetti, Elvezio & Trojani, Fabio, 2001. "Robust inference with GMM estimators," Journal of Econometrics, Elsevier, vol. 101(1), pages 37-69, March.
    5. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," Working Papers 696, Princeton University, Department of Economics, Industrial Relations Section..
    6. repec:fth:prinin:317 is not listed on IDEAS
    7. David Card, 1993. "Using Geographic Variation in College Proximity to Estimate the Return to Schooling," NBER Working Papers 4483, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robin Boadway & Nicolas Marceau & Maurice Marchand, 1996. "Issues in decentralizing the provision of education," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 3(3), pages 311-327, July.
    2. Gagliardi, Luisa & Moretti, Enrico & Serafinelli, Michel, 2023. "The World's Rust Belts: The Heterogeneous Effects of Deindustrialization on 1,993 Cities in Six Countries," IZA Discussion Papers 16648, Institute of Labor Economics (IZA).
    3. van Elk, Roel & van der Steeg, Marc & Webbink, Dinand, 2011. "Does the timing of tracking affect higher education completion?," Economics of Education Review, Elsevier, vol. 30(5), pages 1009-1021, October.
    4. Boerner, Lars & Severgnini, Battista, 2015. "Time for growth," LSE Research Online Documents on Economics 64495, London School of Economics and Political Science, LSE Library.
    5. Constantine, J.M., 1994. "Measuring the Effect of Attending Historically Black Colleges and Universities on Future Wages of Black Students," Williams Project on the Economics of Higher Education DP-30, Department of Economics, Williams College.
    6. Carillo, Maria Rosaria & Papagni, Erasmo & Sapio, Alessandro, 2013. "Do collaborations enhance the high-quality output of scientific institutions? Evidence from the Italian Research Assessment Exercise," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 47(C), pages 25-36.
    7. Paolo Buonanno & Matteo M. Galizzi, 2009. "Advocatus, et non latro? Testing the supplier-induced demand hypothesis for Italian courts of justice," Working Papers 0914, University of Brescia, Department of Economics.
    8. Abu-Qarn, Aamer & Lichtman-Sadot, Shirlee, 2019. "Connecting Disadvantaged Communities to Work and Higher Education Opportunities: Evidence from Public Transportation Penetration to Arab Towns in Israel," IZA Discussion Papers 12824, Institute of Labor Economics (IZA).
    9. Alberto Abadie, 2000. "Semiparametric Estimation of Instrumental Variable Models for Causal Effects," NBER Technical Working Papers 0260, National Bureau of Economic Research, Inc.
    10. Orley Ashenfelter & Cecilia Rouse, 1998. "Income, Schooling, and Ability: Evidence from a New Sample of Identical Twins," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(1), pages 253-284.
    11. Daniel J. Henderson & Anne-Charlotte Souto & Le Wang, 2020. "Higher-Order Risk–Returns to Education," JRFM, MDPI, vol. 13(11), pages 1-25, October.
    12. Suqin Ge & João Macieira, 2024. "Unobserved Worker Quality and Inter‐Industry Wage Differentials," Journal of Industrial Economics, Wiley Blackwell, vol. 72(1), pages 459-515, March.
    13. Dokow, Elad & Luque, Jaime, 2019. "Provision of local public goods in mixed income communities," Journal of Housing Economics, Elsevier, vol. 45(C), pages 1-1.
    14. Kässi, Otto, 2012. "Uncertainty and Heterogeneity in Returns to Education: Evidence from Finland," MPRA Paper 43503, University Library of Munich, Germany.
    15. Rudolf Winter-Ebmer & Aniela Wirz, 2002. "Public funding and enrolment into higher education in Europe," Economics working papers 2002-02, Department of Economics, Johannes Kepler University Linz, Austria.
    16. Mwangi S. Kimenyi & Germano Mwabu & Damiano Kulundu Manda, 2006. "Human Capital Externalities and Private Returns to Education in Kenya," Eastern Economic Journal, Eastern Economic Association, vol. 32(3), pages 493-513, Summer.
    17. Oancea, Bogdan & Pospisil, Richard & Dragoescu, Raluca, 2017. "The return to higher education: evidence from Romania," MPRA Paper 81720, University Library of Munich, Germany.
    18. Nikolov, Plamen & Jimi, Nusrat & Chang, Jerray, 2020. "The Importance of Cognitive Domains and the Returns to Schooling in South Africa: Evidence from Two Labor Surveys," Labour Economics, Elsevier, vol. 65(C).
    19. Filiz Garip, 2012. "An Integrated Analysis of Migration and Remittances: Modeling Migration as a Mechanism for Selection," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 31(5), pages 637-663, October.
    20. Hoogerheide, Lennart & Kleibergen, Frank & van Dijk, Herman K., 2007. "Natural conjugate priors for the instrumental variables regression model applied to the Angrist-Krueger data," Journal of Econometrics, Elsevier, vol. 138(1), pages 63-103, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.03070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.