Stock Price Prediction Under Anomalous Circumstances
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kenny, Geoff & Meyler, Aidan & Quinn, Terry, 1998.
"Forecasting Irish inflation using ARIMA models,"
Research Technical Papers
3/RT/98, Central Bank of Ireland.
- Meyler, Aidan & Kenny, Geoff & Quinn, Terry, 1998. "Forecasting irish inflation using ARIMA models," MPRA Paper 11359, University Library of Munich, Germany.
- Guo, Kun & Sun, Yi & Qian, Xin, 2017. "Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 390-396.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Salvatore Carta & Andrea Medda & Alessio Pili & Diego Reforgiato Recupero & Roberto Saia, 2018. "Forecasting E-Commerce Products Prices by Combining an Autoregressive Integrated Moving Average (ARIMA) Model and Google Trends Data," Future Internet, MDPI, vol. 11(1), pages 1-19, December.
- Abdullah Ghazo, 2021. "Applying the ARIMA Model to the Process of Forecasting GDP and CPI in the Jordanian Economy," International Journal of Financial Research, International Journal of Financial Research, Sciedu Press, vol. 12(3), pages 70-77, May.
- Kenny, Geoff & Meyler, Aidan & Quinn, Terry, 1998.
"Bayesian VAR Models for Forecasting Irish Inflation,"
Research Technical Papers
4/RT/98, Central Bank of Ireland.
- Kenny, Geoff & Meyler, Aidan & Quinn, Terry, 1998. "Bayesian VAR Models for Forecasting Irish Inflation," MPRA Paper 11360, University Library of Munich, Germany.
- Zhao, Ruwei, 2020. "Quantifying the cross sectional relation of daily happiness sentiment and stock return: Evidence from US," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
- Syarifah Inayati & Nur Iriawan & Irhamah, 2024. "A Markov Switching Autoregressive Model with Time-Varying Parameters," Forecasting, MDPI, vol. 6(3), pages 1-23, July.
- Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
- KUMAR Manoj & ANAND Madhu, 2014. "An Application Of Time Series Arima Forecasting Model For Predicting Sugarcane Production In India," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 9(1), pages 81-94, April.
- Meyler, Aidan, 1999.
"A Statistical Measure Of Core Inflation,"
Research Technical Papers
2/RT/99, Central Bank of Ireland.
- Meyler, Aidan, 1999. "A statistical measure of core inflation," MPRA Paper 11362, University Library of Munich, Germany.
- Tamerlan Mashadihasanli, 2022. "Stock Market Price Forecasting Using the Arima Model: an Application to Istanbul, Turkiye," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 9(2), pages 439-454, July.
- Jeff Tayman & Stanley Smith & Jeffrey Lin, 2007. "Precision, bias, and uncertainty for state population forecasts: an exploratory analysis of time series models," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(3), pages 347-369, June.
- Gao, Yang & Wang, Yaojun & Wang, Chao & Liu, Chao, 2018. "Internet attention and information asymmetry: Evidence from Qihoo 360 search data on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 802-811.
- Ning Wang & Shanhui Ke & Yibo Chen & Tao Yan & Andrew Lim, 2019. "Textual Sentiment of Chinese Microblog Toward the Stock Market," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(02), pages 649-671, March.
- Quinn, Terry & Kenny, Geoff & Meyler, Aidan, 1999.
"Inflation Analysis: An Overview,"
Research Technical Papers
1/RT/99, Central Bank of Ireland.
- Quinn, Terry & Kenny, Geoff & Meyler, Aidan, 1999. "Inflation Analysis: An Overview," MPRA Paper 11361, University Library of Munich, Germany.
- Yue-Jun Zhang & Shu-Hui Li, 2019. "The impact of investor sentiment on crude oil market risks: evidence from the wavelet approach," Quantitative Finance, Taylor & Francis Journals, vol. 19(8), pages 1357-1371, August.
- Mohammad Almasarweh & S. AL Wadi, 2018. "ARIMA Model in Predicting Banking Stock Market Data," Modern Applied Science, Canadian Center of Science and Education, vol. 12(11), pages 309-309, November.
- Pegah Eslamieh & Mehdi Shajari & Ahmad Nickabadi, 2023. "User2Vec: A Novel Representation for the Information of the Social Networks for Stock Market Prediction Using Convolutional and Recurrent Neural Networks," Mathematics, MDPI, vol. 11(13), pages 1-26, July.
- Aguilar, Ruben & Valdivia, Daney, 2011. "Precios de exportación de gas natural para Bolivia: Modelación y pooling de pronósticos [Bolivian natural gas export prices: Modeling and forecast pooling]," MPRA Paper 35485, University Library of Munich, Germany.
- Shao, Ying-Hui & Yang, Yan-Hong & Zhou, Wei-Xing, 2022.
"How does economic policy uncertainty comove with stock markets: New evidence from symmetric thermal optimal path method,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
- Ying-Hui Shao & Yan-Hong Yang & Wei-Xing Zhou, 2021. "How does economic policy uncertainty comove with stock markets: New evidence from symmetric thermal optimal path method," Papers 2106.04421, arXiv.org, revised May 2022.
- Mohammad Rafiqul Islam & Nguyet Nguyen, 2020. "Comparison of Financial Models for Stock Price Prediction," JRFM, MDPI, vol. 13(8), pages 1-19, August.
- Shiying Tu & Jiehu Huang & Huailong Mu & Juan Lu & Ying Li, 2024. "Combining Autoregressive Integrated Moving Average Model and Gaussian Process Regression to Improve Stock Price Forecast," Mathematics, MDPI, vol. 12(8), pages 1-15, April.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FMK-2021-10-04 (Financial Markets)
- NEP-FOR-2021-10-04 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2109.15059. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.