IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2109.03971.html
   My bibliography  Save this paper

Some Impossibility Results for Inference With Cluster Dependence with Large Clusters

Author

Listed:
  • Denis Kojevnikov
  • Kyungchul Song

Abstract

This paper focuses on a setting with observations having a cluster dependence structure and presents two main impossibility results. First, we show that when there is only one large cluster, i.e., the researcher does not have any knowledge on the dependence structure of the observations, it is not possible to consistently discriminate the mean. When within-cluster observations satisfy the uniform central limit theorem, we also show that a sufficient condition for consistent $\sqrt{n}$-discrimination of the mean is that we have at least two large clusters. This result shows some limitations for inference when we lack information on the dependence structure of observations. Our second result provides a necessary and sufficient condition for the cluster structure that the long run variance is consistently estimable. Our result implies that when there is at least one large cluster, the long run variance is not consistently estimable.

Suggested Citation

  • Denis Kojevnikov & Kyungchul Song, 2021. "Some Impossibility Results for Inference With Cluster Dependence with Large Clusters," Papers 2109.03971, arXiv.org, revised Jun 2023.
  • Handle: RePEc:arx:papers:2109.03971
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2109.03971
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    2. Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B., 2011. "Inference with dependent data using cluster covariance estimators," Journal of Econometrics, Elsevier, vol. 165(2), pages 137-151.
    3. Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
    2. Kojevnikov, Denis & Song, Kyungchul, 2023. "Some impossibility results for inference with cluster dependence with large clusters," Other publications TiSEM 80b8e4ed-54bc-4a34-883f-f, Tilburg University, School of Economics and Management.
    3. David Powell, 2017. "Inference with Correlated Clusters," Working Papers WR-1137-1, RAND Corporation.
    4. Kojevnikov, Denis & Song, Kyungchul, 2023. "Some impossibility results for inference with cluster dependence with large clusters," Journal of Econometrics, Elsevier, vol. 237(2).
    5. James G. MacKinnon & Matthew D. Webb & Morten Ø. Nielsen, 2017. "Bootstrap And Asymptotic Inference With Multiway Clustering," Working Paper 1386, Economics Department, Queen's University.
    6. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    7. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023. "Fast and reliable jackknife and bootstrap methods for cluster‐robust inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 671-694, August.
    8. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    9. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    10. Christina Gathmann & Björn Sass, 2012. "Taxing Childcare: Effects on Family Labor Supply and Children," CESifo Working Paper Series 3776, CESifo.
    11. James G. MacKinnon, 2019. "How cluster‐robust inference is changing applied econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 851-881, August.
    12. Michael P. Leung, 2023. "Network Cluster‐Robust Inference," Econometrica, Econometric Society, vol. 91(2), pages 641-667, March.
    13. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    14. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    15. James G. MacKinnon & Matthew D. Webb, 2017. "Wild Bootstrap Inference for Wildly Different Cluster Sizes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 233-254, March.
    16. Sun, Yixiao, 2014. "Let’s fix it: Fixed-b asymptotics versus small-b asymptotics in heteroskedasticity and autocorrelation robust inference," Journal of Econometrics, Elsevier, vol. 178(P3), pages 659-677.
    17. Jungbin Hwang, 2017. "Simple and Trustworthy Cluster-Robust GMM Inference," Working papers 2017-19, University of Connecticut, Department of Economics, revised Aug 2020.
    18. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    19. Michael P. Leung, 2022. "Dependence‐robust inference using resampled statistics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 270-285, March.
    20. Bruno Ferman, 2023. "Inference in difference‐in‐differences: How much should we trust in independent clusters?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 358-369, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2109.03971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.