Temporal-Relational Hypergraph Tri-Attention Networks for Stock Trend Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wing-Keung Wong & Meher Manzur & Boon-Kiat Chew, 2003. "How rewarding is technical analysis? Evidence from Singapore stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 13(7), pages 543-551.
- Fuli Feng & Xiangnan He & Xiang Wang & Cheng Luo & Yiqun Liu & Tat-Seng Chua, 2018. "Temporal Relational Ranking for Stock Prediction," Papers 1809.09441, arXiv.org, revised Jan 2019.
- Lei Gao & Gerhard Kling, 2005. "Calendar Effects in Chinese Stock Market," Annals of Economics and Finance, Society for AEF, vol. 6(1), pages 75-88, May.
- Hao, Ying & Chu, Hsiang-Hui & Ho, Keng-Yu & Ko, Kuan-Cheng, 2016. "The 52-week high and momentum in the Taiwan stock market: Anchoring or recency biases?," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 121-138.
- Yu, Hao & Nartea, Gilbert V. & Gan, Christopher & Yao, Lee J., 2013. "Predictive ability and profitability of simple technical trading rules: Recent evidence from Southeast Asian stock markets," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 356-371.
- Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Thomas S. Coe & Kittipong Laosethakul, 2021. "Applying Technical Trading Rules to Beat Long-Term Investing: Evidence from Asian Markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(4), pages 587-611, December.
- Raehyun Kim & Chan Ho So & Minbyul Jeong & Sanghoon Lee & Jinkyu Kim & Jaewoo Kang, 2019. "HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction," Papers 1908.07999, arXiv.org, revised Nov 2019.
- Fuli Feng & Huimin Chen & Xiangnan He & Ji Ding & Maosong Sun & Tat-Seng Chua, 2018. "Enhancing Stock Movement Prediction with Adversarial Training," Papers 1810.09936, arXiv.org, revised Jun 2019.
- Hou, Yang & Meng, Jiayin, 2018. "The momentum effect in the Chinese market and its relationship with the simultaneous and the lagged investor sentiment," MPRA Paper 94838, University Library of Munich, Germany.
- Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
- Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, February.
- Harald Kinateder & Kimberly Weber & Niklas F. Wagner, 2019. "Revisiting Calendar Anomalies In Brics Countries," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 22(2), pages 213-236, July.
- Wong, Wing-Keung & Du, Jun & Chong, Terence Tai-Leung, 2005.
"Do the technical indicators reward chartists? A study on the stock markets of China, Hong Kong and Taiwan,"
Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 1(2), pages 1-23.
- Wing-Keung Wong & Jun Du & Terence Tai-Leung Chong, 2005. "Do the technical indicators reward chartists? A study on the stock markets of China, Hong Kong and Taiwan," Finance Working Papers 22587, East Asian Bureau of Economic Research.
- Jian Guo & Saizhuo Wang & Lionel M. Ni & Heung-Yeung Shum, 2022. "Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence," Papers 2301.04020, arXiv.org.
- Michael McAleer & John Suen & Wing Keung Wong, 2016.
"Profiteering from the Dot-Com Bubble, Subprime Crisis and Asian Financial Crisis,"
The Japanese Economic Review, Japanese Economic Association, vol. 67(3), pages 257-279, September.
- Michael McAleer & John Suen & Wing Keung Wong, 2016. "Profiteering from the Dot-Com Bubble, Subprime Crisis and Asian Financial Crisis," The Japanese Economic Review, Springer, vol. 67(3), pages 257-279, September.
- Michael McAleer & John Suen & Wing Keung Wong, 2013. "Profiteering from the Dot-com Bubble, Sub-Prime Crisis and Asian Financial Crisis," Documentos de Trabajo del ICAE 2013-18, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Jun 2013.
- Michael McAleer & John Suen & Wing Keung Wong, 2013. "Profiteering from the Dot-com Bubble, Sub-Prime Crisis and Asian Financial Crisis," KIER Working Papers 869, Kyoto University, Institute of Economic Research.
- Michael McAleer & John Suen & Wing Keung Wong, 2013. "Profiteering from the Dot-com Bubble, Sub-Prime Crisis and Asian Financial Crisis," Tinbergen Institute Discussion Papers 13-077/III, Tinbergen Institute.
- Michael McAleer & John Suen & Wing Keung Wong, 2013. "Profiteering from the Dot-com Bubble, Sub-Prime Crisis and Asian Financial Crisis," Working Papers in Economics 13/20, University of Canterbury, Department of Economics and Finance.
- Day, Min-Yuh & Ni, Yensen, 2023. "The profitability of seasonal trading timing: Insights from energy-related markets," Energy Economics, Elsevier, vol. 128(C).
- Yang Qiao & Yiping Xia & Xiang Li & Zheng Li & Yan Ge, 2023. "Higher-order Graph Attention Network for Stock Selection with Joint Analysis," Papers 2306.15526, arXiv.org.
- Juvenal José Duarte & Sahudy Montenegro González & José César Cruz, 2021. "Predicting Stock Price Falls Using News Data: Evidence from the Brazilian Market," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 311-340, January.
- Doyle, John R. & Chen, Catherine Huirong, 2009. "The wandering weekday effect in major stock markets," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1388-1399, August.
- Pick-Soon Ling & Ruzita Abdul-Rahim, 2017. "Market Efficiency Based on Unconventional Technical Trading Strategies in Malaysian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 7(3), pages 88-96.
- Daiki Matsunaga & Toyotaro Suzumura & Toshihiro Takahashi, 2019. "Exploring Graph Neural Networks for Stock Market Predictions with Rolling Window Analysis," Papers 1909.10660, arXiv.org, revised Nov 2019.
- Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018.
"Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections,"
JRFM, MDPI, vol. 11(1), pages 1-29, March.
- Chang, C-L. & McAleer, M.J. & Wong, W.-K., 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," Econometric Institute Research Papers EI2018-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Chia-Lin Chang & Michael McALeer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," Tinbergen Institute Discussion Papers 18-011/III, Tinbergen Institute.
- Chia-Lin Chang & Wing-Keung Wong & Michael McAleer, 2018. "Big data, computational science, economics, finance, marketing, management, and psychology: connections," Documentos de Trabajo del ICAE 2018-05, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Takashi Hasuike & Mukesh Kumar Mehlawat, 2018. "Investor-friendly and robust portfolio selection model integrating forecasts for financial tendency and risk-averse," Annals of Operations Research, Springer, vol. 269(1), pages 205-221, October.
- Chulwoo Han, 2022. "Bimodal Characteristic Returns and Predictability Enhancement via Machine Learning," Management Science, INFORMS, vol. 68(10), pages 7701-7741, October.
- Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-08-16 (Big Data)
- NEP-CMP-2021-08-16 (Computational Economics)
- NEP-ISF-2021-08-16 (Islamic Finance)
- NEP-NET-2021-08-16 (Network Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2107.14033. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.