IDEAS home Printed from https://ideas.repec.org/p/ucm/doicae/1318.html
   My bibliography  Save this paper

Profiteering from the Dot-com Bubble, Sub-Prime Crisis and Asian Financial Crisis

Author

Listed:
  • Michael McAleer

    (Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam and Tinbergen Institute, The Netherlands, Department of Quantitative Economics, Complutense University of Madrid, and Institute of Economic Research, Kyoto University.)

  • John Suen

    (Department of Statistics Chinese University of Hong Kong.)

  • Wing Keung Wong

    (Department of Economics Hong Kong Baptist University.)

Abstract

This paper explores the characteristics associated with the formation of bubbles that occurred in the Hong Kong stock market in 1997 and 2007, as well as the 2000 dot-com bubble of Nasdaq. It examines the profitability of Technical Analysis (TA) strategies generating buy and sell signals with knowing and without trading rules. The empirical results show that by applying long and short strategies during the bubble formation and short strategies after the bubble burst, it not only produces returns that are significantly greater than buy and hold strategies, but also produces greater wealth compared with TA strategies without trading rules. We conclude these bubble detection signals help investors generate greater wealth from applying appropriate long and short Moving Average (MA) strategies.

Suggested Citation

  • Michael McAleer & John Suen & Wing Keung Wong, 2013. "Profiteering from the Dot-com Bubble, Sub-Prime Crisis and Asian Financial Crisis," Documentos de Trabajo del ICAE 2013-18, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Jun 2013.
  • Handle: RePEc:ucm:doicae:1318
    as

    Download full text from publisher

    File URL: https://eprints.ucm.es/id/eprint/21682/1/1318.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wong, Wing-Keung & McAleer, Michael, 2009. "Mapping the Presidential Election Cycle in US stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3267-3277.
    2. Wing-Keung Wong & Meher Manzur & Boon-Kiat Chew, 2003. "How rewarding is technical analysis? Evidence from Singapore stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 13(7), pages 543-551.
    3. J. Kung, James & Wong, Wing-Keung, 2009. "Profitability of Technical Analysis in the Singapore Stock Market: before and after the Asian Financial Crisis," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 24, pages 135-150.
    4. Hudson, Robert & Dempsey, Michael & Keasey, Kevin, 1996. "A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices - 1935 to 1994," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1121-1132, July.
    5. repec:bla:jfinan:v:43:y:1988:i:3:p:661-76 is not listed on IDEAS
    6. Hendrik Bessembinder & Kalok Chan, 1998. "Market Efficiency and the Returns to Technical Analysis," Financial Management, Financial Management Association, vol. 27(2), Summer.
    7. Tomohiro Hirano & Noriyuki Yanagawa, 2017. "Asset Bubbles, Endogenous Growth, and Financial Frictions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(1), pages 406-443.
    8. Ratner, Mitchell & Leal, Ricardo P. C., 1999. "Tests of technical trading strategies in the emerging equity markets of Latin America and Asia," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1887-1905, December.
    9. Campbell, J.Y. & Shiller, R.J., 1988. "Stock Prices, Earnings And Expected Dividends," Papers 334, Princeton, Department of Economics - Econometric Research Program.
    10. Emmanuel Farhi & Jean Tirole, 2012. "Bubbly Liquidity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(2), pages 678-706.
    11. Mills, Terence C, 1997. "Technical Analysis and the London Stock Exchange: Testing Trading Rules Using the FT30," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 319-331, October.
    12. repec:bla:jfinan:v:55:y:2000:i:4:p:1705-1770 is not listed on IDEAS
    13. James J. Kung & Wing‐Keung Wong, 2009. "Efficiency Of The Taiwan Stock Market," The Japanese Economic Review, Japanese Economic Association, vol. 60(3), pages 389-394, September.
    14. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    15. Conrad, Jennifer & Kaul, Gautam, 1988. "Time-Variation in Expected Returns," The Journal of Business, University of Chicago Press, vol. 61(4), pages 409-425, October.
    16. Neftci, Salih N, 1991. "Naive Trading Rules in Financial Markets and Wiener-Kolmogorov Prediction Theory: A Study of "Technical Analysis."," The Journal of Business, University of Chicago Press, vol. 64(4), pages 549-571, October.
    17. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    18. Harvey, Campbell R, 1995. "Predictable Risk and Returns in Emerging Markets," The Review of Financial Studies, Society for Financial Studies, vol. 8(3), pages 773-816.
    19. Hirano, Tomohiro & Yanagawa, Noriyuki, 2010. "Asset Bubbles, Endogenous Growth, and Financial Frictions," MPRA Paper 24085, University Library of Munich, Germany.
    20. Allen, Helen & Taylor, Mark P, 1990. "Charts, Noise and Fundamentals in the London Foreign Exchange Market," Economic Journal, Royal Economic Society, vol. 100(400), pages 49-59, Supplemen.
    21. Lo, Andrew W & MacKinlay, A Craig, 1990. "When Are Contrarian Profits Due to Stock Market Overreaction?," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 175-205.
    22. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    23. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    24. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    25. Vincent Wing-Shing Lam & Terence Tai-Leung Chong & Wing-Keung Wong, 2007. "Profitability of intraday and interday momentum strategies," Applied Economics Letters, Taylor & Francis Journals, vol. 14(15), pages 1103-1108.
    26. Terence Tai-Leung Chong & Wing-Kam Ng, 2008. "Technical analysis and the London stock exchange: testing the MACD and RSI rules using the FT30," Applied Economics Letters, Taylor & Francis Journals, vol. 15(14), pages 1111-1114.
    27. Wong, Wing-Keung & Du, Jun & Chong, Terence Tai-Leung, 2005. "Do the technical indicators reward chartists? A study on the stock markets of China, Hong Kong and Taiwan," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 1(2), pages 1-23.
    28. Joseph Man-Joe Leung & Terence Tai-Leung Chong, 2003. "An empirical comparison of moving average envelopes and Bollinger Bands," Applied Economics Letters, Taylor & Francis Journals, vol. 10(6), pages 339-341.
    29. Raymond Hon Fu Chan & Spike Tsz Ho Lee & Wing-Keung Wong, 2014. "Technical Analysis and Financial Asset Forecasting:From Simple Tools to Advanced Techniques," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8625, February.
    30. Wong, Wing-Keung & Du, Jun & Chong, Terence Tai-Leung, 2005. "Do the technical indicators reward chartists? A study on the stock markets of China, Hong Kong and Taiwan," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 1(2), pages 1-23.
    31. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    32. Sweeney, Richard J., 1988. "Some New Filter Rule Tests: Methods and Results," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 285-300, September.
    33. Balvers, Ronald J & Cosimano, Thomas F & McDonald, Bill, 1990. "Predicting Stock Returns in an Efficient Market," Journal of Finance, American Finance Association, vol. 45(4), pages 1109-1128, September.
    34. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    35. Isakov, D. & Hollistein, M., 1998. "Application of Simple Technical Trading Rules to Swiss Stock Prices: Is It Profitable?," Papers 98.2, Ecole des Hautes Etudes Commerciales, Universite de Geneve-.
    36. Jensen, Michael C & Bennington, George A, 1970. "Random Walks and Technical Theories: Some Additional Evidence," Journal of Finance, American Finance Association, vol. 25(2), pages 469-482, May.
    37. Fong, Wai Mun & Yong, Lawrence H. M., 2005. "Chasing trends: recursive moving average trading rules and internet stocks," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 43-76, January.
    38. Harry V. Roberts, 1959. "Stock‐Market “Patterns” And Financial Analysis: Methodological Suggestions," Journal of Finance, American Finance Association, vol. 14(1), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen Huu Hau & Tran Trung Tinh & Hoa Anh Tuong & Wing-Keung Wong, 2020. "Review of Matrix Theory with Applications in Education and Decision Sciences," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(1), pages 28-69, March.
    2. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2015. "Behavioural, Financial, and Health & Medical Economics: A Connection," Documentos de Trabajo del ICAE 2015-14, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    3. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," JRFM, MDPI, vol. 11(1), pages 1-29, March.
    4. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, and Big Data: Connections," Documentos de Trabajo del ICAE 2018-09, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    5. Suchismita Mishra & Le Zhao, 2021. "Order Routing Decisions for a Fragmented Market: A Review," JRFM, MDPI, vol. 14(11), pages 1-32, November.
    6. Kai-Yin Woo & Chulin Mai & Michael McAleer & Wing-Keung Wong, 2020. "Review on Efficiency and Anomalies in Stock Markets," Economies, MDPI, vol. 8(1), pages 1-51, March.
    7. Ayesha Liaqat & Mian Sajid Nazir & Iftikhar Ahmad & Hammad Hassan Mirza & Farooq Anwar, 2020. "Do stock price bubbles correlate between China and Pakistan? An inquiry of pre‐ and post‐Chinese investment in Pakistani capital market under China‐Pakistan Economic Corridor regime," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 25(3), pages 323-335, July.
    8. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, And Big Data: Connections," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 36-94, December.
    9. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 11(1), pages 1-29, March.
    10. Edward C. H. Tang, 2024. "Examining the Impacts of the Pandemic on the Housing Bubble in Hong Kong," Advances in Decision Sciences, Asia University, Taiwan, vol. 28(1), pages 27-46, March.
    11. Ayesha Liaqat & Mian Sajid Nazir & Iftikhar Ahmad, 2019. "Identification of multiple stock bubbles in an emerging market: application of GSADF approach," Economic Change and Restructuring, Springer, vol. 52(3), pages 301-326, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    2. Wong, Wing-Keung & Du, Jun & Chong, Terence Tai-Leung, 2005. "Do the technical indicators reward chartists? A study on the stock markets of China, Hong Kong and Taiwan," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 1(2), pages 1-23.
    3. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    4. Wing-Keung Wong & Meher Manzur & Boon-Kiat Chew, 2003. "How rewarding is technical analysis? Evidence from Singapore stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 13(7), pages 543-551.
    5. Strobel, Marcus & Auer, Benjamin R., 2018. "Does the predictive power of variable moving average rules vanish over time and can we explain such tendencies?," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 168-184.
    6. Xu, Yexiao, 2004. "Small levels of predictability and large economic gains," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 247-275, March.
    7. Ratner, Mitchell & Leal, Ricardo P. C., 1999. "Tests of technical trading strategies in the emerging equity markets of Latin America and Asia," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1887-1905, December.
    8. Farias Nazário, Rodolfo Toríbio & e Silva, Jéssica Lima & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2017. "A literature review of technical analysis on stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 115-126.
    9. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    10. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    11. Tania Morris & Jules Comeau, 2020. "Portfolio creation using artificial neural networks and classification probabilities: a Canadian study," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(2), pages 133-163, June.
    12. Gerritsen, Dirk F., 2016. "Are chartists artists? The determinants and profitability of recommendations based on technical analysis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 179-196.
    13. Osman Kilic & Joseph M. Marks & Kiseok Nam, 2022. "Predictable asset price dynamics, risk-return tradeoff, and investor behavior," Review of Quantitative Finance and Accounting, Springer, vol. 59(2), pages 749-791, August.
    14. Alexandros Milionis & Evangelia Papanagiotou, 2009. "A study of the predictive performance of the moving average trading rule as applied to NYSE, the Athens Stock Exchange and the Vienna Stock Exchange: sensitivity analysis and implications for weak-for," Applied Financial Economics, Taylor & Francis Journals, vol. 19(14), pages 1171-1186.
    15. Paskalis Glabadanidis, 2017. "Timing the Market with a Combination of Moving Averages," International Review of Finance, International Review of Finance Ltd., vol. 17(3), pages 353-394, September.
    16. David I. Harvey & Stephen J. Leybourne & Robert Sollis & A.M. Robert Taylor, 2021. "Real‐time detection of regimes of predictability in the US equity premium," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 45-70, January.
    17. R. Rosillo & D. de la Fuente & J. A. L. Brugos, 2013. "Technical analysis and the Spanish stock exchange: testing the RSI, MACD, momentum and stochastic rules using Spanish market companies," Applied Economics, Taylor & Francis Journals, vol. 45(12), pages 1541-1550, April.
    18. J. Annaert & W. Van Hyfte, 2006. "Long-Horizon Mean Reversion for the Brussels Stock Exchange: Evidence for the 19th Century," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/376, Ghent University, Faculty of Economics and Business Administration.
    19. Kung, James J., 2009. "Predictability of Technical Trading Rules: Evidence from the Taiwan Stock Market," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 5(1-2), pages 1-17, March.
    20. Senol Emir & Hasan Dincer & Umit Hacioglu & Serhat Yuksel, 2016. "Random Regression Forest Model using Technical Analysis Variables: An application on Turkish Banking Sector in Borsa Istanbul (BIST)," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 5(3), pages 85-102, April.

    More about this item

    Keywords

    Technical analysis; Moving average; Buy-and-hold strategy; Dot-com bubble; Asian financial crisis; Sub-prime crisis; Moving linear regression; Volatility.;
    All these keywords.

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:1318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Águeda González Abad (email available below). General contact details of provider: https://edirc.repec.org/data/feucmes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.