IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.15526.html
   My bibliography  Save this paper

Higher-order Graph Attention Network for Stock Selection with Joint Analysis

Author

Listed:
  • Yang Qiao
  • Yiping Xia
  • Xiang Li
  • Zheng Li
  • Yan Ge

Abstract

Stock selection is important for investors to construct profitable portfolios. Graph neural networks (GNNs) are increasingly attracting researchers for stock prediction due to their strong ability of relation modelling and generalisation. However, the existing GNN methods only focus on simple pairwise stock relation and do not capture complex higher-order structures modelling relations more than two nodes. In addition, they only consider factors of technical analysis and overlook factors of fundamental analysis that can affect the stock trend significantly. Motivated by them, we propose higher-order graph attention network with joint analysis (H-GAT). H-GAT is able to capture higher-order structures and jointly incorporate factors of fundamental analysis with factors of technical analysis. Specifically, the sequential layer of H-GAT take both types of factors as the input of a long-short term memory model. The relation embedding layer of H-GAT constructs a higher-order graph and learn node embedding with GAT. We then predict the ranks of stock return. Extensive experiments demonstrate the superiority of our H-GAT method on the profitability test and Sharp ratio over both NSDAQ and NYSE datasets

Suggested Citation

  • Yang Qiao & Yiping Xia & Xiang Li & Zheng Li & Yan Ge, 2023. "Higher-order Graph Attention Network for Stock Selection with Joint Analysis," Papers 2306.15526, arXiv.org.
  • Handle: RePEc:arx:papers:2306.15526
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.15526
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aminah Abdullah & Iqbal Khadaroo & Junaid Shaikh, 2009. "Institutionalisation of XBRL in the USA and UK," International Journal of Managerial and Financial Accounting, Inderscience Enterprises Ltd, vol. 1(3), pages 292-304.
    2. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    3. Nobi, Ashadun & Maeng, Seong Eun & Ha, Gyeong Gyun & Lee, Jae Woo, 2014. "Effects of global financial crisis on network structure in a local stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 135-143.
    4. Jiexia Ye & Juanjuan Zhao & Kejiang Ye & Chengzhong Xu, 2020. "Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction," Papers 2005.04955, arXiv.org, revised Oct 2020.
    5. Robert M. Hull, 1999. "Leverage Ratios, Industry Norms, and Stock Price Reaction: An Empirical Investigation of Stock-for-Debt Transactions," Financial Management, Financial Management Association, vol. 28(2), Summer.
    6. Gonzalez, Liliana & Powell, John G. & Shi, Jing & Wilson, Antony, 2005. "Two centuries of bull and bear market cycles," International Review of Economics & Finance, Elsevier, vol. 14(4), pages 469-486.
    7. Dixon, Matthew & Klabjan, Diego & Bang, Jin Hoon, 2017. "Classification-based financial markets prediction using deep neural networks," Algorithmic Finance, IOS Press, vol. 6(3-4), pages 67-77.
    8. Fuli Feng & Xiangnan He & Xiang Wang & Cheng Luo & Yiqun Liu & Tat-Seng Chua, 2018. "Temporal Relational Ranking for Stock Prediction," Papers 1809.09441, arXiv.org, revised Jan 2019.
    9. Ou, Jane A. & Penman, Stephen H., 1989. "Financial statement analysis and the prediction of stock returns," Journal of Accounting and Economics, Elsevier, vol. 11(4), pages 295-329, November.
    10. Talitha Nathaniela Nariswari & Nugi Mohammad Nugraha, 2020. "Profit Growth: Impact of Net Profit Margin, Gross Profit Margin and Total Assets Turnover," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 9(4), pages 87-96, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Zhu & Yuante Li & Yifan Hu & Sheng Xiang & Qinyuan Liu & Dawei Cheng & Yuqi Liang, 2024. "MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU," Papers 2410.20679, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomoshiro Ochiai & Jose C. Nacher, 2020. "Unveiling the directional network behind the financial statements data using volatility constraint correlation," Papers 2008.07836, arXiv.org, revised Jun 2023.
    2. Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
    3. Daiki Matsunaga & Toyotaro Suzumura & Toshihiro Takahashi, 2019. "Exploring Graph Neural Networks for Stock Market Predictions with Rolling Window Analysis," Papers 1909.10660, arXiv.org, revised Nov 2019.
    4. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    5. Wentao Xu & Weiqing Liu & Lewen Wang & Yingce Xia & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information," Papers 2110.13716, arXiv.org, revised Jan 2022.
    6. Kelvin J. L. Koa & Yunshan Ma & Ritchie Ng & Tat-Seng Chua, 2023. "Diffusion Variational Autoencoder for Tackling Stochasticity in Multi-Step Regression Stock Price Prediction," Papers 2309.00073, arXiv.org, revised Oct 2023.
    7. Sheng Xiang & Dawei Cheng & Chencheng Shang & Ying Zhang & Yuqi Liang, 2023. "Temporal and Heterogeneous Graph Neural Network for Financial Time Series Prediction," Papers 2305.08740, arXiv.org.
    8. Parisa Golbayani & Dan Wang & Ionut Florescu, 2020. "Application of Deep Neural Networks to assess corporate Credit Rating," Papers 2003.02334, arXiv.org.
    9. Yu Zhao & Huaming Du & Ying Liu & Shaopeng Wei & Xingyan Chen & Fuzhen Zhuang & Qing Li & Ji Liu & Gang Kou, 2022. "Stock Movement Prediction Based on Bi-typed Hybrid-relational Market Knowledge Graph via Dual Attention Networks," Papers 2201.04965, arXiv.org, revised Jan 2022.
    10. Wentao Xu & Weiqing Liu & Chang Xu & Jiang Bian & Jian Yin & Tie-Yan Liu, 2021. "REST: Relational Event-driven Stock Trend Forecasting," Papers 2102.07372, arXiv.org, revised Feb 2021.
    11. J. Cuñado & L. Gil-Alana & F. Gracia, 2009. "US stock market volatility persistence: evidence before and after the burst of the IT bubble," Review of Quantitative Finance and Accounting, Springer, vol. 33(3), pages 233-252, October.
    12. Peng Zhu & Yuante Li & Yifan Hu & Qinyuan Liu & Dawei Cheng & Yuqi Liang, 2024. "LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU," Papers 2409.08282, arXiv.org, revised Sep 2024.
    13. Lam, Kevin C.K. & Sami, Heibatollah & Zhou, Haiyan, 2013. "Changes in the value relevance of accounting information over time: Evidence from the emerging market of China," Journal of Contemporary Accounting and Economics, Elsevier, vol. 9(2), pages 123-135.
    14. Roni Michaely & Stefano Rossi & Michael Weber & Michael Weber, 2017. "The Information Content of Dividends: Safer Profits, Not Higher Profits," CESifo Working Paper Series 6751, CESifo.
    15. Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017. "Forecasting Global Equity Indices Using Large Bayesian Vars," Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
    16. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    17. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    18. Li, Ziran & Sun, Jiajing & Wang, Shouyang, 2013. "Amplitude-Duration-Persistence Trade-off Relationship for Long Term Bear Stock Markets," MPRA Paper 54177, University Library of Munich, Germany.
    19. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.
    20. German Forero-Laverde, 2016. "Are All Booms and Busts Created Equal? A New Methodology for Understanding Bull and Bear Stock Markets," UB School of Economics Working Papers 2016/339, University of Barcelona School of Economics.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.15526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.