IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v123y2013i8p3328-3357.html
   My bibliography  Save this article

BSDEs with jumps, optimization and applications to dynamic risk measures

Author

Listed:
  • Quenez, Marie-Claire
  • Sulem, Agnès

Abstract

In the Brownian case, the links between dynamic risk measures and BSDEs have been widely studied. In this paper, we consider the case with jumps. We first study the properties of BSDEs driven by a Brownian motion and a Poisson random measure. In particular, we provide a comparison theorem under quite weak assumptions, extending that of Royer [21]. We then give some properties of dynamic risk measures induced by BSDEs with jumps. We provide a representation property of such dynamic risk measures in the convex case as well as some results on a robust optimization problem in the case of model ambiguity.

Suggested Citation

  • Quenez, Marie-Claire & Sulem, Agnès, 2013. "BSDEs with jumps, optimization and applications to dynamic risk measures," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 3328-3357.
  • Handle: RePEc:eee:spapps:v:123:y:2013:i:8:p:3328-3357
    DOI: 10.1016/j.spa.2013.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913000641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Freddy Delbaen & Shige Peng & Emanuela Rosazza Gianin, 2010. "Representation of the penalty term of dynamic concave utilities," Finance and Stochastics, Springer, vol. 14(3), pages 449-472, September.
    2. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    3. Erhan Bayraktar & Ioannis Karatzas & Song Yao, 2009. "Optimal Stopping for Dynamic Convex Risk Measures," Papers 0909.4948, arXiv.org, revised Nov 2009.
    4. Royer, Manuela, 2006. "Backward stochastic differential equations with jumps and related non-linear expectations," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1358-1376, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    2. Fan, Xiliang & Ren, Yong & Zhu, Dongjin, 2010. "A note on the doubly reflected backward stochastic differential equations driven by a Lévy process," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 690-696, April.
    3. Bayraktar, Erhan & Yao, Song, 2015. "Doubly reflected BSDEs with integrable parameters and related Dynkin games," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4489-4542.
    4. Safa Alsheyab & Tahir Choulli, 2021. "Reflected backward stochastic differential equations under stopping with an arbitrary random time," Papers 2107.11896, arXiv.org.
    5. Delong, Lukasz & Imkeller, Peter, 2010. "On Malliavin's differentiability of BSDEs with time delayed generators driven by Brownian motions and Poisson random measures," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1748-1775, August.
    6. Roxana Dumitrescu & Marie-Claire Quenez & Agn`es Sulem, 2016. "BSDEs with default jump," Papers 1612.05681, arXiv.org, revised Sep 2017.
    7. Irina Penner & Anthony Réveillac, 2015. "Risk measures for processes and BSDEs," Finance and Stochastics, Springer, vol. 19(1), pages 23-66, January.
    8. Marie-Amelie Morlais, 2006. "Utility Maximization in a jump market model," Papers math/0612181, arXiv.org, revised May 2008.
    9. Antoon Pelsser & Mitja Stadje, 2014. "Time-Consistent And Market-Consistent Evaluations," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 25-65, January.
    10. Vorbrink, Jörg, 2014. "Financial markets with volatility uncertainty," Journal of Mathematical Economics, Elsevier, vol. 53(C), pages 64-78.
    11. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    12. Wei Chen, 2013. "Fractional G-White Noise Theory, Wavelet Decomposition for Fractional G-Brownian Motion, and Bid-Ask Pricing Application to Finance Under Uncertainty," Papers 1306.4070, arXiv.org.
    13. Zhao, Guoqing, 2009. "Lenglart domination inequalities for g-expectations," Statistics & Probability Letters, Elsevier, vol. 79(22), pages 2338-2342, November.
    14. Dejian Tian, 2022. "Pricing principle via Tsallis relative entropy in incomplete market," Papers 2201.05316, arXiv.org, revised Oct 2022.
    15. De Scheemaekere, Xavier, 2011. "A converse comparison theorem for backward stochastic differential equations with jumps," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 298-301, February.
    16. Yang Shen & Tak Kuen Siu, 2018. "A Risk-Based Approach for Asset Allocation with A Defaultable Share," Risks, MDPI, vol. 6(1), pages 1-27, February.
    17. Samuel N. Cohen & Victor Fedyashov, 2014. "Ergodic BSDEs with jumps and time dependence," Papers 1406.4329, arXiv.org, revised Nov 2015.
    18. Siu, Tak Kuen, 2016. "A functional Itô’s calculus approach to convex risk measures with jump diffusion," European Journal of Operational Research, Elsevier, vol. 250(3), pages 874-883.
    19. Sigrid Källblad & Jan Obłój & Thaleia Zariphopoulou, 2018. "Dynamically consistent investment under model uncertainty: the robust forward criteria," Finance and Stochastics, Springer, vol. 22(4), pages 879-918, October.
    20. Stefan Kremsner & Alexander Steinicke, 2022. "$${{\varvec{L}}}^{{\varvec{p}}}$$ L p -Solutions and Comparison Results for Lévy-Driven Backward Stochastic Differential Equations in a Monotonic, General Growth Setting," Journal of Theoretical Probability, Springer, vol. 35(1), pages 231-281, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:123:y:2013:i:8:p:3328-3357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.