IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i14p1629-d591860.html
   My bibliography  Save this article

Mortality/Longevity Risk-Minimization with or without Securitization

Author

Listed:
  • Tahir Choulli

    (Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada)

  • Catherine Daveloose

    (Department of Applied Mathematics, Computer Science, and Statistics, Ghent University, 9000 Gent, Belgium)

  • Michèle Vanmaele

    (Department of Applied Mathematics, Computer Science, and Statistics, Ghent University, 9000 Gent, Belgium)

Abstract

This paper addresses the risk-minimization problem, with and without mortality securitization, à la Föllmer–Sondermann for a large class of equity-linked mortality contracts when no model for the death time is specified. This framework includes situations in which the correlation between the market model and the time of death is arbitrary general, and hence leads to the case of a market model where there are two levels of information—the public information, which is generated by the financial assets, and a larger flow of information that contains additional knowledge about the death time of an insured. By enlarging the filtration, the death uncertainty and its entailed risk are fully considered without any mathematical restriction. Our key tool lies in our optional martingale representation, which states that any martingale in the large filtration stopped at the death time can be decomposed into precise orthogonal local martingales. This allows us to derive the dynamics of the value processes of the mortality/longevity securities used for the securitization, and to decompose any mortality/longevity liability into the sum of orthogonal risks by means of a risk basis. The first main contribution of this paper resides in quantifying, as explicitly as possible, the effect of mortality on the risk-minimizing strategy by determining the optimal strategy in the enlarged filtration in terms of strategies in the smaller filtration. Our second main contribution consists of finding risk-minimizing strategies with insurance securitization by investing in stocks and one (or more) mortality/longevity derivatives such as longevity bonds. This generalizes the existing literature on risk-minimization using mortality securitization in many directions.

Suggested Citation

  • Tahir Choulli & Catherine Daveloose & Michèle Vanmaele, 2021. "Mortality/Longevity Risk-Minimization with or without Securitization," Mathematics, MDPI, vol. 9(14), pages 1-27, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1629-:d:591860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/14/1629/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/14/1629/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dhaene, Jan & Kukush, Alexander & Luciano, Elisa & Schoutens, Wim & Stassen, Ben, 2013. "On the (in-)dependence between financial and actuarial risks," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 522-531.
    2. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    3. Antoon Pelsser & Mitja Stadje, 2014. "Time-Consistent And Market-Consistent Evaluations," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 25-65, January.
    4. Friedberg Leora & Webb Anthony, 2007. "Life Is Cheap: Using Mortality Bonds to Hedge Aggregate Mortality Risk," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 7(1), pages 1-33, July.
    5. Stéphane Loisel, 2010. "Understanding, Modeling and Managing Longevity Risk: Key Issues and Main Challenges," Post-Print hal-00517902, HAL.
    6. Anna Aksamit & Tahir Choulli & Jun Deng & Monique Jeanblanc, 2017. "No-arbitrage up to random horizon for quasi-left-continuous models," Finance and Stochastics, Springer, vol. 21(4), pages 1103-1139, October.
    7. Biagini, Francesca & Rheinländer, Thorsten & Widenmann, Jan, 2013. "Hedging Mortality Claims With Longevity Bonds," ASTIN Bulletin, Cambridge University Press, vol. 43(2), pages 123-157, May.
    8. Blake David & Cairns Andrew & Dowd Kevin, 2008. "The Birth of the Life Market," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 3(1), pages 1-32, September.
    9. Dahl, Mikkel & Moller, Thomas, 2006. "Valuation and hedging of life insurance liabilities with systematic mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 193-217, October.
    10. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2013. "Valuing equity-linked death benefits in jump diffusion models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 615-623.
    11. Dhaene, Jan & Stassen, Ben & Barigou, Karim & Linders, Daniël & Chen, Ze, 2017. "Fair valuation of insurance liabilities: Merging actuarial judgement and market-consistency," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 14-27.
    12. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    13. Barbarin, Jérôme, 2008. "Heath-Jarrow-Morton modelling of longevity bonds and the risk minimization of life insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 41-55, August.
    14. Deelstra, Griselda & Devolder, Pierre & Gnameho, Kossi & Hieber, Peter, 2020. "Valuation Of Hybrid Financial And Actuarial Products In Life Insurance By A Novel Three-Step Method," ASTIN Bulletin, Cambridge University Press, vol. 50(3), pages 709-742, September.
    15. Tahir Choulli & Catherine Daveloose & Michèle Vanmaele, 2020. "A martingale representation theorem and valuation of defaultable securities," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1527-1564, October.
    16. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2016. "Unit-linked life insurance policies: optimal hedging in partially observable market models," Papers 1608.07226, arXiv.org, revised Dec 2016.
    17. Deelstra, Griselda & Devolder, Pierre & Gnameho, Kossi & Hieber, Peter, 2020. "Valuation of hybrid financial and actuarial products in life insurance by a novel three-step method," LIDAM Reprints ISBA 2020020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Barigou, Karim & Chen, Ze & Dhaene, Jan, 2019. "Fair dynamic valuation of insurance liabilities: Merging actuarial judgement with market- and time-consistency," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 19-29.
    19. Bauer, Daniel & Börger, Matthias & Ruß, Jochen, 2010. "On the pricing of longevity-linked securities," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 139-149, February.
    20. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
    21. Emilio Bisetti, 2012. "The Impact of Longevity Risk on the Term Structure of the Risk-Return Tradeoff," Rivista di Politica Economica, SIPI Spa, issue 4, pages 79-119, October-D.
    22. Ceci, Claudia & Colaneri, Katia & Cretarola, Alessandra, 2017. "Unit-linked life insurance policies: Optimal hedging in partially observable market models," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 149-163.
    23. Christophette Blanchet-Scalliet & Monique Jeanblanc, 2004. "Hazard rate for credit risk and hedging defaultable contingent claims," Finance and Stochastics, Springer, vol. 8(1), pages 145-159, January.
    24. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2018. "Indifference pricing of pure endowments via BSDEs under partial information," Papers 1804.00223, arXiv.org, revised Jul 2020.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahir Choulli & Catherine Daveloose & Mich`ele Vanmaele, 2018. "Mortality/longevity Risk-Minimization with or without securitization," Papers 1805.11844, arXiv.org.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Chen, Ze & Feng, Runhuan & Li, Hong & Yang, Tianyu, 2024. "Coping with longevity via hedging: Fair dynamic valuation of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 154-169.
    4. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    5. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    6. Karim Barigou & Daniel Linders & Fan Yang, 2021. "Actuarial-consistency and two-step actuarial valuations: a new paradigm to insurance valuation," Papers 2109.13796, arXiv.org, revised Mar 2022.
    7. Karim Barigou & Valeria Bignozzi & Andreas Tsanakas, 2021. "Insurance valuation: A two-step generalised regression approach," Post-Print hal-03043244, HAL.
    8. Karim Barigou & Daniël Linders & Fan yang, 2022. "Actuarial-consistency and two-step actuarial valuations: a new paradigm to insurance valuation," Working Papers hal-03327710, HAL.
    9. Hansjörg Albrecher & Karl‐Theodor Eisele & Mogens Steffensen & Mario V. Wüthrich, 2022. "On the cost‐of‐capital rate under incomplete market valuation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(4), pages 1139-1158, December.
    10. Tahir Choulli & Catherine Daveloose & Mich`ele Vanmaele, 2015. "A martingale representation theorem and valuation of defaultable securities," Papers 1510.05858, arXiv.org, revised May 2018.
    11. Karim Barigou & Valeria Bignozzi & Andreas Tsanakas, 2020. "Insurance valuation: A two-step generalised regression approach," Papers 2012.04364, arXiv.org, revised Nov 2021.
    12. Alessandra Cretarola & Benedetta Salterini, 2023. "Utility-based indifference pricing of pure endowments in a Markov-modulated market model," Papers 2301.13575, arXiv.org.
    13. Min Zheng, 2015. "Heterogeneous Expectations and Speculative Behavior in Insurance-Linked Securities," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-12, March.
    14. Engsner, Hampus & Lindskog, Filip & Thøgersen, Julie, 2023. "Multiple-prior valuation of cash flows subject to capital requirements," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 41-56.
    15. Schmeck, Maren Diane & Schmidli, Hanspeter, 2019. "Mortality Options: the Point of View of an Insurer," Center for Mathematical Economics Working Papers 616, Center for Mathematical Economics, Bielefeld University.
    16. Karim Barigou & Daniël Linders & Fan Yang, 2022. "Actuarial-consistency and two-step actuarial valuations: a new paradigm to insurance valuation," Post-Print hal-03327710, HAL.
    17. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.
    18. Karim Barigou & Valeria Bignozzi & Andreas Tsanakas, 2021. "Insurance valuation: A two-step generalised regression approach," Working Papers hal-03043244, HAL.
    19. Chen, Bingzheng & Zhang, Lihong & Zhao, Lin, 2010. "On the robustness of longevity risk pricing," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 358-373, December.
    20. Chen, Ze & Chen, Bingzheng & Dhaene, Jan & Yang, Tianyu, 2021. "Fair dynamic valuation of insurance liabilities via convex hedging," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1629-:d:591860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.