IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.10024.html
   My bibliography  Save this paper

Robust deep hedging

Author

Listed:
  • Eva Lutkebohmert
  • Thorsten Schmidt
  • Julian Sester

Abstract

We study pricing and hedging under parameter uncertainty for a class of Markov processes which we call generalized affine processes and which includes the Black-Scholes model as well as the constant elasticity of variance (CEV) model as special cases. Based on a general dynamic programming principle, we are able to link the associated nonlinear expectation to a variational form of the Kolmogorov equation which opens the door for fast numerical pricing in the robust framework. The main novelty of the paper is that we propose a deep hedging approach which efficiently solves the hedging problem under parameter uncertainty. We numerically evaluate this method on simulated and real data and show that the robust deep hedging outperforms existing hedging approaches, in particular in highly volatile periods.

Suggested Citation

  • Eva Lutkebohmert & Thorsten Schmidt & Julian Sester, 2021. "Robust deep hedging," Papers 2106.10024, arXiv.org, revised Nov 2021.
  • Handle: RePEc:arx:papers:2106.10024
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.10024
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eva Lütkebohmert & Julian Sester, 2019. "Tightening robust price bounds for exotic derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 19(11), pages 1797-1815, November.
    2. Sandrine Gumbel & Thorsten Schmidt, 2020. "Machine learning for multiple yield curve markets: fast calibration in the Gaussian affine framework," Papers 2004.07736, arXiv.org, revised Apr 2020.
    3. Tolulope Fadina & Ariel Neufeld & Thorsten Schmidt, 2018. "Affine processes under parameter uncertainty," Papers 1806.02912, arXiv.org, revised Mar 2019.
    4. Sandrine Gümbel & Thorsten Schmidt, 2020. "Machine Learning for Multiple Yield Curve Markets: Fast Calibration in the Gaussian Affine Framework," Risks, MDPI, vol. 8(2), pages 1-18, May.
    5. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models," Risks, MDPI, vol. 8(4), pages 1-31, September.
    6. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    7. Alexandre Carbonneau & Frédéric Godin, 2021. "Equal risk pricing of derivatives with deep hedging," Quantitative Finance, Taylor & Francis Journals, vol. 21(4), pages 593-608, April.
    8. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A generative adversarial network approach to calibration of local stochastic volatility models," Papers 2005.02505, arXiv.org, revised Sep 2020.
    9. B. Acciaio & M. Beiglböck & F. Penkner & W. Schachermayer, 2016. "A Model-Free Version Of The Fundamental Theorem Of Asset Pricing And The Super-Replication Theorem," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 233-251, April.
    10. Yangang Chen & Justin W. L. Wan, 2021. "Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 45-67, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carl Remlinger & Joseph Mikael & Romuald Elie, 2022. "Robust Operator Learning to Solve PDE," Working Papers hal-03599726, HAL.
    2. Ariel Neufeld & Julian Sester & Daiying Yin, 2022. "Detecting data-driven robust statistical arbitrage strategies with deep neural networks," Papers 2203.03179, arXiv.org, revised Feb 2024.
    3. Alexandre Carbonneau & Frédéric Godin, 2023. "Deep Equal Risk Pricing of Financial Derivatives with Non-Translation Invariant Risk Measures," Risks, MDPI, vol. 11(8), pages 1-27, August.
    4. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    2. Ariel Neufeld & Philipp Schmocker, 2022. "Chaotic Hedging with Iterated Integrals and Neural Networks," Papers 2209.10166, arXiv.org, revised Jul 2024.
    3. Ariel Neufeld & Julian Sester, 2021. "Model-free price bounds under dynamic option trading," Papers 2101.01024, arXiv.org, revised Jul 2021.
    4. Ariel Neufeld & Julian Sester, 2021. "A deep learning approach to data-driven model-free pricing and to martingale optimal transport," Papers 2103.11435, arXiv.org, revised Dec 2022.
    5. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    6. Hölzermann, Julian, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Center for Mathematical Economics Working Papers 633, Center for Mathematical Economics, Bielefeld University.
    7. Erhan Bayraktar & Yuchong Zhang, 2016. "Fundamental Theorem of Asset Pricing Under Transaction Costs and Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1039-1054, August.
    8. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    9. Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
    10. Meriam El Mansour & Emmanuel Lepinette, 2023. "Robust discrete-time super-hedging strategies under AIP condition and under price uncertainty," Papers 2311.08847, arXiv.org.
    11. Erhan Bayraktar & Matteo Burzoni, 2020. "On the quasi-sure superhedging duality with frictions," Finance and Stochastics, Springer, vol. 24(1), pages 249-275, January.
    12. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    13. Shuoqing Deng & Xiaolu Tan & Xiang Yu, 2018. "Utility maximization with proportional transaction costs under model uncertainty," Papers 1805.06498, arXiv.org, revised Aug 2019.
    14. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    15. Christa Cuchiero & Luca Di Persio & Francesco Guida & Sara Svaluto-Ferro, 2022. "Measure-valued processes for energy markets," Papers 2210.09331, arXiv.org.
    16. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    17. Huy N. Chau, 2020. "On robust fundamental theorems of asset pricing in discrete time," Papers 2007.02553, arXiv.org, revised Apr 2024.
    18. Shuoqing Deng & Xiaolu Tan & Xiang Yu, 2020. "Utility Maximization with Proportional Transaction Costs Under Model Uncertainty," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1210-1236, November.
    19. Gianluca Cassese, 2021. "Complete and competitive financial markets in a complex world," Finance and Stochastics, Springer, vol. 25(4), pages 659-688, October.
    20. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.10024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.