IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v11y2023i8p140-d1208530.html
   My bibliography  Save this article

Deep Equal Risk Pricing of Financial Derivatives with Non-Translation Invariant Risk Measures

Author

Listed:
  • Alexandre Carbonneau

    (Department of Mathematics and Statistics, Concordia University, Montréal, QC H3G 1M8, Canada)

  • Frédéric Godin

    (Department of Mathematics and Statistics, Concordia University, Montréal, QC H3G 1M8, Canada)

Abstract

The objective is to study the use of non-translation invariant risk measures within the equal risk pricing (ERP) methodology for the valuation of financial derivatives. The ability to move beyond the class of convex risk measures considered in several prior studies provides more flexibility within the pricing scheme. In particular, suitable choices for the risk measure embedded in the ERP framework, such as the semi-mean-square-error (SMSE), are shown herein to alleviate the price inflation phenomenon observed under the tail value at risk-based ERP as documented in previous work. The numerical implementation of non-translation invariant ERP is performed through deep reinforcement learning, where a slight modification is applied to the conventional deep hedging training algorithm so as to enable obtaining a price through a single training run for the two neural networks associated with the respective long and short hedging strategies. The accuracy of the neural network training procedure is shown in simulation experiments not to be materially impacted by such modification of the training algorithm.

Suggested Citation

  • Alexandre Carbonneau & Frédéric Godin, 2023. "Deep Equal Risk Pricing of Financial Derivatives with Non-Translation Invariant Risk Measures," Risks, MDPI, vol. 11(8), pages 1-27, August.
  • Handle: RePEc:gam:jrisks:v:11:y:2023:i:8:p:140-:d:1208530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/11/8/140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/11/8/140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eva Lutkebohmert & Thorsten Schmidt & Julian Sester, 2021. "Robust deep hedging," Papers 2106.10024, arXiv.org, revised Nov 2021.
    2. Martin Schweizer, 1995. "Variance-Optimal Hedging in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 20(1), pages 1-32, February.
    3. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep Equal Risk Pricing of Financial Derivatives with Multiple Hedging Instruments," Papers 2102.12694, arXiv.org.
    4. Maciej Augustyniak & Frédéric Godin & Clarence Simard, 2017. "Assessing the effectiveness of local and global quadratic hedging under GARCH models," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1305-1318, September.
    5. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    6. Michèle Breton & Frédéric Godin, 2017. "Global Hedging through Post-Decision State Variables," JRFM, MDPI, vol. 10(3), pages 1-6, August.
    7. Guo, Ivan & Zhu, Song-Ping, 2017. "Equal risk pricing under convex trading constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 136-151.
    8. Mesias Alfeus & Xin-Jiang He & Song-Ping Zhu, 2022. "An Empirical Analysis Of Option Pricing With Short Sell Bans," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 25(03), pages 1-26, May.
    9. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    10. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    11. Brian Ning & Franco Ho Ting Lin & Sebastian Jaimungal, 2021. "Double Deep Q-Learning for Optimal Execution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 28(4), pages 361-380, July.
    12. David W. Lu, 2017. "Agent Inspired Trading Using Recurrent Reinforcement Learning and LSTM Neural Networks," Papers 1707.07338, arXiv.org.
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. Yunan Ye & Hengzhi Pei & Boxin Wang & Pin-Yu Chen & Yada Zhu & Jun Xiao & Bo Li, 2020. "Reinforcement-Learning based Portfolio Management with Augmented Asset Movement Prediction States," Papers 2002.05780, arXiv.org.
    15. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    16. Dieter Hendricks & Diane Wilcox, 2014. "A reinforcement learning extension to the Almgren-Chriss model for optimal trade execution," Papers 1403.2229, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ariel Neufeld & Julian Sester, 2024. "Non-concave distributionally robust stochastic control in a discrete time finite horizon setting," Papers 2404.05230, arXiv.org.
    2. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Is the difference between deep hedging and delta hedging a statistical arbitrage?," Papers 2407.14736, arXiv.org, revised Oct 2024.
    3. Pascal Franc{c}ois & Genevi`eve Gauthier & Fr'ed'eric Godin & Carlos Octavio P'erez Mendoza, 2024. "Enhancing Deep Hedging of Options with Implied Volatility Surface Feedback Information," Papers 2407.21138, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep equal risk pricing of financial derivatives with non-translation invariant risk measures," Papers 2107.11340, arXiv.org.
    2. Alexandre Carbonneau & Fr'ed'eric Godin, 2020. "Equal Risk Pricing of Derivatives with Deep Hedging," Papers 2002.08492, arXiv.org, revised Jun 2020.
    3. Augustyniak, Maciej & Godin, Frédéric & Simard, Clarence, 2019. "A profitable modification to global quadratic hedging," Journal of Economic Dynamics and Control, Elsevier, vol. 104(C), pages 111-131.
    4. Maciej Augustyniak & Alexandru Badescu, 2021. "On the computation of hedging strategies in affine GARCH models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 710-735, May.
    5. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    6. Carbonneau, Alexandre, 2021. "Deep hedging of long-term financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 327-340.
    7. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    8. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    9. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    10. Saeed Marzban & Erick Delage & Jonathan Yumeng Li, 2021. "Deep Reinforcement Learning for Equal Risk Pricing and Hedging under Dynamic Expectile Risk Measures," Papers 2109.04001, arXiv.org.
    11. Alexandre Carbonneau & Fr'ed'eric Godin, 2021. "Deep Equal Risk Pricing of Financial Derivatives with Multiple Hedging Instruments," Papers 2102.12694, arXiv.org.
    12. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    13. Pascal François & Geneviève Gauthier & Frédéric Godin, 2012. "Optimal Hedging when the Underlying Asset Follows a Regime-switching Markov Process," Cahiers de recherche 1234, CIRPEE.
    14. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, Department of Economics and Business Economics, Aarhus University.
    15. Ederington, Louis H. & Guan, Wei, 2013. "The cross-sectional relation between conditional heteroskedasticity, the implied volatility smile, and the variance risk premium," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3388-3400.
    16. Matthias R. Fengler & Alexander Melnikov, 2018. "GARCH option pricing models with Meixner innovations," Review of Derivatives Research, Springer, vol. 21(3), pages 277-305, October.
    17. Zumbach, Gilles, 2012. "Option pricing and ARCH processes," Finance Research Letters, Elsevier, vol. 9(3), pages 144-156.
    18. François, Pascal & Gauthier, Geneviève & Godin, Frédéric, 2014. "Optimal hedging when the underlying asset follows a regime-switching Markov process," European Journal of Operational Research, Elsevier, vol. 237(1), pages 312-322.
    19. Junting Liu & Qi Wang & Yuanyuan Zhang, 2024. "VIX option pricing through nonaffine GARCH dynamics and semianalytical formula," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1189-1223, July.
    20. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:11:y:2023:i:8:p:140-:d:1208530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.