IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.13564.html
   My bibliography  Save this paper

Stock Market Prediction using Natural Language Processing -- A Survey

Author

Listed:
  • Om Mane
  • Saravanakumar kandasamy

Abstract

The stock market is a network which provides a platform for almost all major economic transactions. While investing in the stock market is a good idea, investing in individual stocks may not be, especially for the casual investor. Smart stock-picking requires in-depth research and plenty of dedication. Predicting this stock value offers enormous arbitrage profit opportunities. This attractiveness of finding a solution has prompted researchers to find a way past problems like volatility, seasonality, and dependence on time. This paper surveys recent literature in the domain of natural language processing and machine learning techniques used to predict stock market movements. The main contributions of this paper include the sophisticated categorizations of many recent articles and the illustration of the recent trends of research in stock market prediction and its related areas.

Suggested Citation

  • Om Mane & Saravanakumar kandasamy, 2022. "Stock Market Prediction using Natural Language Processing -- A Survey," Papers 2208.13564, arXiv.org.
  • Handle: RePEc:arx:papers:2208.13564
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.13564
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junran Wu & Ke Xu & Xueyuan Chen & Shangzhe Li & Jichang Zhao, 2021. "Price graphs: Utilizing the structural information of financial time series for stock prediction," Papers 2106.02522, arXiv.org, revised Nov 2021.
    2. Jungsik Hwang, 2020. "Modeling Financial Time Series using LSTM with Trainable Initial Hidden States," Papers 2007.06848, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      NEP fields

      This paper has been announced in the following NEP Reports:

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.13564. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.