IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2105.15008.html
   My bibliography  Save this paper

Multi-step Reflection Principle and Barrier Options

Author

Listed:
  • Hangsuck Lee
  • Gaeun Lee
  • Seongjoo Song

Abstract

This paper examines a class of barrier options-multi-step barrier options, which can have any finite number of barriers of any level. We obtain a general, explicit expression of option prices of this type under the Black-Scholes model. Multi-step barrier options are not only useful in that they can handle barriers of different levels and time steps, but can also approximate options with arbitrary barriers. Moreover, they can be embedded in financial products such as deposit insurances based on jump models with simple barriers. Along the way, we derive multi-step reflection principle, which generalizes the reflection principle of Brownian motion.

Suggested Citation

  • Hangsuck Lee & Gaeun Lee & Seongjoo Song, 2021. "Multi-step Reflection Principle and Barrier Options," Papers 2105.15008, arXiv.org.
  • Handle: RePEc:arx:papers:2105.15008
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2105.15008
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Hangsuck, 2003. "Pricing equity-indexed annuities with path-dependent options," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 677-690, December.
    2. Lee, Hangsuck & Ko, Bangwon & Song, Seongjoo, 2019. "Valuing step barrier options and their icicled variations," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 396-411.
    3. Serena Tiong, 2000. "Valuing Equity-Indexed Annuities," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(4), pages 149-163.
    4. Jang, Ji-Wook & Krvavych, Yuriy, 2004. "Arbitrage-free premium calculation for extreme losses using the shot noise process and the Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 97-111, August.
    5. Ng, Andrew Cheuk-Yin & Li, Johnny Siu-Hang, 2011. "Valuing variable annuity guarantees with the multivariate Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 393-400.
    6. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2012. "Valuing equity-linked death benefits and other contingent options: A discounted density approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 73-92.
    7. Tristan Guillaume, 2010. "Step double barrier options," Post-Print hal-00924266, HAL.
    8. Naoto Kunitomo & Masayuki Ikeda, 1992. "Pricing Options With Curved Boundaries1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 275-298, October.
    9. Emmanuel Gobet, 2009. "Advanced Monte Carlo methods for barrier and related exotic options," Post-Print hal-00319947, HAL.
    10. Ya-Wen Hwang & Shih-Chieh Chang & Yang-Che Wu, 2015. "Capital Forbearance, Ex Ante Life Insurance Guaranty Schemes, and Interest Rate Uncertainty," North American Actuarial Journal, Taylor & Francis Journals, vol. 19(2), pages 94-115, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Yu-Ming & Lyuu, Yuh-Dauh, 2023. "Very fast algorithms for implied barriers and moving-barrier options pricing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 251-271.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hangsuck Lee & Gaeun Lee & Seongjoo Song, 2022. "Multi‐step reflection principle and barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(4), pages 692-721, April.
    2. Lee, Hangsuck & Lee, Gaeun & Song, Seongjoo, 2023. "Min–max multi-step barrier options and their variants," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    3. Lee, Hangsuck & Ko, Bangwon & Song, Seongjoo, 2019. "Valuing step barrier options and their icicled variations," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 396-411.
    4. Lee, Hangsuck & Lee, Minha & Ko, Bangwon, 2022. "A semi-analytic valuation of two-asset barrier options and autocallable products using Brownian bridge," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    5. Lee, Hangsuck & Kim, Eunchae & Ko, Bangwon, 2022. "Valuing lookback options with barrier," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    6. Hangsuck Lee & Hongjun Ha & Minha Lee, 2022. "Piecewise linear double barrier options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(1), pages 125-151, January.
    7. Fernández Lexuri & Hieber Peter & Scherer Matthias, 2013. "Double-barrier first-passage times of jump-diffusion processes," Monte Carlo Methods and Applications, De Gruyter, vol. 19(2), pages 107-141, July.
    8. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    9. Fan, Kun & Shen, Yang & Siu, Tak Kuen & Wang, Rongming, 2015. "Pricing annuity guarantees under a double regime-switching model," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 62-78.
    10. Lee, Hangsuck & Ha, Hongjun & Lee, Minha, 2021. "Valuation of piecewise linear barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    11. Liang, Xiaoqing & Tsai, Cary Chi-Liang & Lu, Yi, 2016. "Valuing guaranteed equity-linked contracts under piecewise constant forces of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 150-161.
    12. Feng, Runhuan & Shimizu, Yasutaka, 2016. "Applications of central limit theorems for equity-linked insurance," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 138-148.
    13. Zhou, Jiang & Wu, Lan, 2015. "Valuing equity-linked death benefits with a threshold expense strategy," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 79-90.
    14. Gan, Guojun, 2013. "Application of data clustering and machine learning in variable annuity valuation," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 795-801.
    15. Lee, Hangsuck & Ahn, Soohan & Ko, Bangwon, 2019. "Generalizing the reflection principle of Brownian motion, and closed-form pricing of barrier options and autocallable investments," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    16. Hangsuck Lee & Hongjun Ha & Minha Lee, 2022. "Piecewise linear boundary crossing probabilities, barrier options, and variable annuities," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2248-2272, December.
    17. Qian, Linyi & Wang, Wei & Wang, Rongming & Tang, Yincai, 2010. "Valuation of equity-indexed annuity under stochastic mortality and interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 123-129, October.
    18. Lee, Hangsuck & Ko, Bangwon & Lee, Minha, 2023. "The pricing and static hedging of multi-step double barrier options," Finance Research Letters, Elsevier, vol. 55(PA).
    19. Gerber, Hans U. & Shiu, Elias S.W. & Yang, Hailiang, 2015. "Geometric stopping of a random walk and its applications to valuing equity-linked death benefits," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 313-325.
    20. Hainaut, Donatien, 2016. "Impact of volatility clustering on equity indexed annuities," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 367-381.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2105.15008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.