IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2104.08956.html
   My bibliography  Save this paper

On the Investment Strategies in Occupational Pension Plans

Author

Listed:
  • Frank Bosserhoff
  • An Chen
  • Nils Sorensen
  • Mitja Stadje

Abstract

Demographic changes increase the necessity to base the pension system more and more on the second and the third pillar, namely the occupational and private pension plans; this paper deals with Target Date Funds (TDFs), which are a typical investment opportunity for occupational pension planners. TDFs are usually identified with a decreasing fraction of wealth invested in equity (a so-called glide path) as retirement comes closer, i.e., wealth is invested more risky the younger the saver is. We investigate whether this is actually optimal in the presence of non-tradable income risk in a stochastic volatility environment. The retirement planning procedure is formulated as a stochastic optimization problem. We find it is the (random) contributions that induce the optimal path exhibiting a glide path structure, both in the constant and stochastic volatility environment. Moreover, the initial wealth and the initial contribution made to a retirement account strongly influence the fractional amount of wealth to be invested in risky assets. The risk aversion of an individual mainly determines the steepness of the glide path.

Suggested Citation

  • Frank Bosserhoff & An Chen & Nils Sorensen & Mitja Stadje, 2021. "On the Investment Strategies in Occupational Pension Plans," Papers 2104.08956, arXiv.org.
  • Handle: RePEc:arx:papers:2104.08956
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2104.08956
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guan, Guohui & Liang, Zongxia, 2015. "Mean–variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 99-109.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Chen, An & Nguyen, Thai & Stadje, Mitja, 2018. "Optimal investment under VaR-Regulation and Minimum Insurance," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 194-209.
    4. Broeders, Dirk & Chen, An, 2010. "Pension regulation and the market value of pension liabilities: A contingent claims analysis using Parisian options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1201-1214, June.
    5. Idris Kharroubi & Nicolas Langrené & Huyên Pham, 2013. "A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization," Working Papers hal-00905899, HAL.
    6. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    7. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
    8. Gao, Jianwei, 2009. "Optimal portfolios for DC pension plans under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 479-490, June.
    9. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942.
    10. Stephanie Aaronson & Julia Lynn Coronado, 2005. "Are firms or workers behind the shift away from DB pension plan?," Finance and Economics Discussion Series 2005-17, Board of Governors of the Federal Reserve System (U.S.).
    11. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. Philip Protter & Emmanuelle Clément & Damien Lamberton, 2002. "An analysis of a least squares regression method for American option pricing," Finance and Stochastics, Springer, vol. 6(4), pages 449-471.
    14. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.
    15. Li, Danping & Rong, Ximin & Zhao, Hui & Yi, Bo, 2017. "Equilibrium investment strategy for DC pension plan with default risk and return of premiums clauses under CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 6-20.
    16. Jan Kallsen & Johannes Muhle-Karbe, 2010. "Utility Maximization In Affine Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 459-477.
    17. Idris Kharroubi & Nicolas Langren'e & Huy^en Pham, 2013. "A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization," Papers 1311.4503, arXiv.org.
    18. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    19. Kraft, Holger & Steffensen, Mogens, 2013. "A dynamic programming approach to constrained portfolios," European Journal of Operational Research, Elsevier, vol. 229(2), pages 453-461.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    2. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.
    3. Jules H. van Binsbergen & Michael W. Brandt, 2007. "Optimal Asset Allocation in Asset Liability Management," NBER Working Papers 12970, National Bureau of Economic Research, Inc.
    4. Yichen Zhu & Marcos Escobar-Anel, 2021. "A Neural Network Monte Carlo Approximation for Expected Utility Theory," JRFM, MDPI, vol. 14(7), pages 1-18, July.
    5. Yuan-Hung Hsuku, 2007. "Dynamic consumption and asset allocation with derivative securities," Quantitative Finance, Taylor & Francis Journals, vol. 7(2), pages 137-149.
    6. Hainaut, Donatien & Akbaraly, Adnane, 2023. "Risk management with Local Least Squares Monte-Carlo," LIDAM Discussion Papers ISBA 2023003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    8. Sakda Chaiworawitkul & Patrick S. Hagan & Andrew Lesniewski, 2014. "Semiclassical approximation in stochastic optimal control I. Portfolio construction problem," Papers 1406.6090, arXiv.org.
    9. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    10. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    11. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    12. Zhiping Chen & Liyuan Wang & Ping Chen & Haixiang Yao, 2019. "Continuous-Time Mean–Variance Optimization For Defined Contribution Pension Funds With Regime-Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-33, September.
    13. Blake, David & Wright, Douglas & Zhang, Yumeng, 2014. "Age-dependent investing: Optimal funding and investment strategies in defined contribution pension plans when members are rational life cycle financial planners," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 105-124.
    14. Nicole Branger & Matthias Muck & Stefan Weisheit, 2019. "Correlation risk and international portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 128-146, January.
    15. Chenxu Li & Olivier Scaillet & Yiwen Shen, 2020. "Wealth Effect on Portfolio Allocation in Incomplete Markets," Papers 2004.10096, arXiv.org, revised Aug 2021.
    16. An Chen & Thai Nguyen & Manuel Rach, 2021. "A collective investment problem in a stochastic volatility environment: The impact of sharing rules," Annals of Operations Research, Springer, vol. 302(1), pages 85-109, July.
    17. Yang Shen, 2020. "Effect of Variance Swap in Hedging Volatility Risk," Risks, MDPI, vol. 8(3), pages 1-34, July.
    18. M. Escobar-Anel & M. Kschonnek & R. Zagst, 2023. "Mind the cap!—constrained portfolio optimisation in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 23(12), pages 1793-1813, November.
    19. Rytchkov, Oleg, 2016. "Time-Varying Margin Requirements and Optimal Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(2), pages 655-683, April.
    20. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2104.08956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.