IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1406.6090.html
   My bibliography  Save this paper

Semiclassical approximation in stochastic optimal control I. Portfolio construction problem

Author

Listed:
  • Sakda Chaiworawitkul
  • Patrick S. Hagan
  • Andrew Lesniewski

Abstract

This is the first in a series of papers in which we study an efficient approximation scheme for solving the Hamilton-Jacobi-Bellman equation for multi-dimensional problems in stochastic control theory. The method is a combination of a WKB style asymptotic expansion of the value function, which reduces the second order HJB partial differential equation to a hierarchy of first order PDEs, followed by a numerical algorithm to solve the first few of the resulting first order PDEs. This method is applicable to stochastic systems with a relatively large number of degrees of freedom, and does not seem to suffer from the curse of dimensionality. Computer code implementation of the method using modest computational resources runs essentially in real time. We apply the method to solve a general portfolio construction problem.

Suggested Citation

  • Sakda Chaiworawitkul & Patrick S. Hagan & Andrew Lesniewski, 2014. "Semiclassical approximation in stochastic optimal control I. Portfolio construction problem," Papers 1406.6090, arXiv.org.
  • Handle: RePEc:arx:papers:1406.6090
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1406.6090
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    2. Idris Kharroubi & Nicolas Langren'e & Huy^en Pham, 2013. "A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization," Papers 1311.4503, arXiv.org.
    3. Cox, John C. & Huang, Chi-fu, 1991. "A variational problem arising in financial economics," Journal of Mathematical Economics, Elsevier, vol. 20(5), pages 465-487.
    4. Cesar O. Aguilar & Arthur J. Krener, 2014. "Numerical Solutions to the Bellman Equation of Optimal Control," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 527-552, February.
    5. Idris Kharroubi & Nicolas Langrené & Huyên Pham, 2013. "A numerical algorithm for fully nonlinear HJB equations: an approach by control randomization," Working Papers hal-00905899, HAL.
    6. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Bosserhoff & An Chen & Nils Sorensen & Mitja Stadje, 2021. "On the Investment Strategies in Occupational Pension Plans," Papers 2104.08956, arXiv.org.
    2. Hong‐Chih Huang, 2010. "Optimal Multiperiod Asset Allocation: Matching Assets to Liabilities in a Discrete Model," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(2), pages 451-472, June.
    3. Castañeda, Pablo & Devoto, Benjamín, 2016. "On the structural estimation of an optimal portfolio rule," Finance Research Letters, Elsevier, vol. 16(C), pages 290-300.
    4. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    5. Munk, Claus & Sorensen, Carsten, 2004. "Optimal consumption and investment strategies with stochastic interest rates," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 1987-2013, August.
    6. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans," Journal of Economic Dynamics and Control, Elsevier, vol. 30(5), pages 843-877, May.
    7. Frank Seifried, 2010. "Optimal investment with deferred capital gains taxes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 181-199, February.
    8. Francesco Menoncin, 2005. "Risk management and asset allocation with jump-diffusion exogenous risks: Some algebraic approximated solutions," The European Journal of Finance, Taylor & Francis Journals, vol. 11(3), pages 223-246.
    9. Jouini, Elyes, 2001. "Arbitrage and control problems in finance: A presentation," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 167-183, April.
    10. Lioui, Abraham & Poncet, Patrice, 2003. "International asset allocation: A new perspective," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2203-2230, November.
    11. Castaneda, Pablo, 2006. "Long Term Risk Assessment in a Defined Contribution Pension System," MPRA Paper 3347, University Library of Munich, Germany, revised 30 Apr 2007.
    12. Larsen, Linda Sandris, 2010. "Optimal investment strategies in an international economy with stochastic interest rates," International Review of Economics & Finance, Elsevier, vol. 19(1), pages 145-165, January.
    13. Oleksii Mostovyi, 2011. "Necessary and sufficient conditions in the problem of optimal investment with intermediate consumption," Papers 1107.5852, arXiv.org, revised Jul 2012.
    14. Paolo BATTOCCHIO & Francesco MENONCIN, 2002. "Optimal Pension Management under Stochastic Interest Rates, Wages, and Inflation," LIDAM Discussion Papers IRES 2002021, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    15. Pablo Castañeda & Heinz Rudolph, 2010. "Portfolio Choice, Minimum Return Guarantees, and Competition in DC Pension Systems," Working Papers 39, Superintendencia de Pensiones, revised Feb 2010.
    16. Francesco, MENONCIN, 2002. "Investment Strategies in Incomplete Markets : Sufficient Conditions for a Closed Form Solution," LIDAM Discussion Papers IRES 2002033, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    17. Alev Meral, 2019. "Comparison of various risk measures for an optimal portfolio," Papers 1912.09573, arXiv.org.
    18. Gao, Jianwei, 2008. "Stochastic optimal control of DC pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1159-1164, June.
    19. Francesco MENONCIN, 2001. "How to Manage Inflation Risk in an Asset Allocation Problem : an Algebric Aproximated Solution," LIDAM Discussion Papers IRES 2001035, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    20. Francesco, MENONCIN, 2003. "Optimal Real Consumption and Asset Allocation for a HARA Investor with Labour Income," LIDAM Discussion Papers IRES 2003015, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1406.6090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.